Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Godsil C., Royle G. — Algebraic Graph Theory
Godsil C., Royle G. — Algebraic Graph Theory



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Algebraic Graph Theory

Авторы: Godsil C., Royle G.

Аннотация:

Algebraic graph theory is a fascinating subject concerned with the interplay between algebra and graph theory. Algebraic tools can be used to give surprising and elegant proofs of graph theoretic facts, and there are many interesting algebraic objects associated with graphs. The authors take an inclusive view of the subject, and present a wide range of topics. These range from standard classics, such as the characterization of line graphs by eigenvalues, to more unusual areas such as geometric embeddings of graphs and the study of graph homomorphisms. The authors' goal has been to present each topic in a self-contained fashion, presenting the main tools and ideas, with an emphasis on their use in understanding concrete examples. A substantial proportion of the book covers topics that have not appeared in book form before, and as such it provides an accessible introduction to the research literature and to important open questions in modern algebraic graph theory. This book is primarily aimed at graduate students and researchers in graph theory, combinatorics, or discrete mathematics in general. However, all the necessary graph theory is developed from scratch, so the only pre-requisite for reading it is a first course in linear algebra and a small amount of elementary group theory. It should be accessible to motivated upper-level undergraduates. Chris Godsil is a full professor in the Department of Combinatorics and Optimization at the University of Waterloo. His main research interests lie in the interactions between algebra and combinatorics, in particular the application of algebraic techniques to graphs, designs and codes. He has published more than 70 papers in these areas, is a founding editor of "The Journal of Algebraic Combinatorics" and is the author of the book "Algebraic Combinatorics". Gordon Royle teaches in the Department of Computer Science & Software Engineering at the University of Western Australia. His main research interests lie in the application of computers to combinatorial problems, in particular the cataloguing, enumeration and investigation of graphs, designs and finite geometries. He has published more than 30 papers in graph theory, design theory and finite geometry.


Язык: en

Рубрика: Математика/Алгебра/Комбинаторика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2001

Количество страниц: 232

Добавлена в каталог: 29.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Normalized representation      301
Null graph      2
octahedron      13
Odd girth      104
Odd graph      206
Orbit      20
Orbital      25
Order of generalized polygon      87
Orientable map      416
Orientable surface      405
Orientation      167
Oriented cut      308
Oriented cycle      310
Oriented cycle, eulerian cycle      419
Oriented cycle, eulerian partition      419
Oriented cycle, graph      167
Oriented cycle, link      387
Orthogonal array      224
Orthogonal representation      287
Out-valency      29
Outerplanar      300
Paley graph      221
Parameters      218
Partial linear space      78
Path      4
Pedestrian      333
Perfect code      198
Perfect graph      142
Perfect matching      43
Peripheral cycle      295
Permutation group      19
Permutation representation      19
Petersen graph      9
Petrie map      416
Planar      12
Planar embedding      13
Planar triangulation      13
Plane graph      13
Point graph      235
Pointwise stabilizer      20
Positive definite      173
Positive semidefinite      173
Prime knot      389
Primitive graph      218
Primitive group      28
Principal idempotents      185
Principal tripartition      334
Prism, 5-prism      7
PRODUCT      106
Projective plane      79
Projective space      83
Proper colouring      6
Puncturing a code      348
q-critical      326
q-stable      326
Quartic      5
Quasi-symmetric design      239
Quotient graph      196
Quotient matrix      203
r-fold cover      115
Rank function      341
Rank of a group      26
Rank of a lattice      315
Rank, polynomial      356
Rank-two reduction      183
Rational function      186
Rayleigh's inequalities      202
Real projective plane      15
Recurrent state      325
Reduced      117
Reflection group      268
Regular, fractional colouring      136
Regular, graph      5
Regular, group      48
Regular, isotopy      384
Regular, k-regular      5
Regular, two-graph      256
Reidemeister moves      376
Reliability polynomial      354
Replication number      95
Representation of a graph      284
Restriction      346
retract      7
Retraction      7
Right regular representation      48
Rim      405
Root system      268
Rotor      363
s-arc      59
Schlafli graph      259
Score      322
Seidel matrix      250
Seifert circles      419
Self-complementary      17
Self-dual      14
Self-dual, graph      14
Self-dual, incidence structure      79
Self-paired orbital      26
Semiregular bipartite graph      12
Semiregular group      47
Setwise stabilizer      20
Shadow      374
Shore      308
Shortening a code      349
Signed characteristic vector      308
Signed rotor      366
Signed set      361
Simple folding      114
Simple graph      2
simplex      249
Sink      337
Skew symmetric      191
Source      337
Spanning subgraph      3
Spanning tree      4
Spectral decomposition      186
Spectral radius      177
Spectrum      164
Split link      388
Square lattice graph      219
Stabilizer      20
Star      267
Star, $K_{1,n}$      10
Star-closed      267
Star-closure      267
State      322
Steiner system      95
Steiner triple system      95
Straight eulerian cycle      396
Straight eulerian partition      396
Strong component      29
Strong orientation      337
Strong product      155
Strongly connected      29
Strongly regular      218
Subconstituents      227
Subdirect product      107
Subdivision graph      45
Subgraph      3
Subgraph, induced      3
Subgraph, spanning      3
Subharmonic      175
Sublattice      315
Submodular      341
Sum of two knots      389
Support of a permutation      23
Support of a vector      176
Switching      255
Switching class      255
Switching graph      255
Switching off a vertex      255
Switching, equivalent      255
Symmetric design      96
Symmetric graph      59
Symmetric group      4
Symmetric orbital      26
Symmetry group      268
Symplectic form      243
Symplectic graph      184 242
System of imprimitivity      27
Tail of an edge      167
Thick vertex      84
Thick, generalized polygon      84
Thin vertex      84
Tight interlacing      202
Torus      15
Totally isotropic      83
Trace      165
Transitive graph      33
Transitive group      20
TREE      4
Triad      93
triangle      11
Triangular graph      219
Triangulation      13
Truncation      126
Tutte polynomial      371
Two-graph      255
Unimodular      317
Uniquely n-colourable      113
Unknot      375
Valency      5
Vertex      1
Vertex connectivity      39
Vertex cutset      39
Vertex transitive      33
Walk      165 395
Walk regular      190
Weak path      29
Weakly connected      29
Weight enumerator      358
Weight of a codeword      358
Weight of a fractional clique      136
Weight of a fractional colouring      136
Weighted Laplacian      286
Whitney flip      390
Witt design      241
Writhe      387
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте