Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Popovic D., Palit A.K. — Computational Intelligence in Time Series Forecasting: Theory and Engineering Applications
Popovic D., Palit A.K. — Computational Intelligence in Time Series Forecasting: Theory and Engineering Applications



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Computational Intelligence in Time Series Forecasting: Theory and Engineering Applications

Авторы: Popovic D., Palit A.K.

Аннотация:

Foresight in an engineering enterprise can make the difference between success and failure and can be vital to the effective control of industrial systems. Forecasting the future from accumulated historical data is a tried and tested method in areas such as engineering finance. Applying time series analysis in the on-line milieu of most industrial plants has been more problematic because of the time and computational effort required. The advent of soft computing tools such as the neural network and the genetic algorithm offers a solution.

Chapter by chapter, Computational Intelligence in Time Series Forecasting harnesses the power of intelligent technologies individually and in combination. Examples of the particular systems and processes susceptible to each technique are investigated, cultivating a comprehensive exposition of the improvements on offer in quality, model building and predictive control, and the selection of appropriate tools from the plethora available; these include:

• forecasting electrical load, chemical reactor behaviour and high-speed-network congestion using fuzzy logic;

• prediction of airline passenger patterns and of output data for nonlinear plant with combination neuro-fuzzy networks;

• evolutionary modelling and anticipation of stock performance by the use of genetic algorithms.

Application-oriented engineers in process control, manufacturing, the production industries and research centres will find much to interest them in Computational Intelligence in Time Series Forecasting and the book is suitable for industrial training purposes. It will also serve as valuable reference material for experimental researchers


Язык: en

Рубрика: Технология/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 1st edition

Год издания: 2005

Количество страниц: 396

Добавлена в каталог: 11.12.2007

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
rapid prototyping      316
RBF      see Radial basis function
Real genetic operators      204ff
Real-coded GA      203ff
Real-time recurrent learning algorithm      90
Recognition level      351
Recombination      195
Recurrent networks      4 80 87ff 309
Regression analysis      27
Regression methods      27
Regressive models      27ff
Regularization approach      126
Regularization degree      126
Regularization method      126
Regularization network      128
Regularization parameter      126
Relational fuzzy logic system      147 149ff
Relational fuzzy model      154ff
Removing irrelevant fuzzy sets      289ff
Removing redundant inputs      290ff
Reproduction      196 199 323
Residual diagnostics      48
Resonating neural networks      80
Result producing branches      212
Ridge regression method      129
Robust regression      349
Robust wavelet network      349
Roulette wheel selection      199
Rule base reduction      286
Rule base redundancy      279
Rule base simplification      285
Rule base simplification algorithms      291ff
Rule grade table      158
Rules, degree assignment      160
Rules, generation      157
Rules, generation, algorithm      157ff
Rules, generation, by clustering      173ff
S-expressions based encoding      308
S-norm      228
Salience measure      124
Saliency of the weights      122 123
Sample autocorrelation function      44
SARIMABP model      131
Scalability problem      311
Search vector      101
Seasonality      19 21
Selection      7 195 199
Selection, function      204ff
Selection, procedure      199ff
Self-organising map      92
Self-organising networks      79
Semantic Knowledge      336
Sensitivity calculation method      121
Sensory cortices      351
Sensory level      351
Separate modelling approach      136
Separating hyperplanes      86
Short-term forecasting      249ff
Short-term memory feature      87
Sigmoid activation function      81 82 99 111
Sigmoid kernels      342
Similar fuzzy sets      281
Similarity measure      276 282
Similarity of fuzzy sets      281
Similarity relations      294ff
Similarity-based rule base simplification      282ff
Similarity-based simplification      280
Similarity-driven simplification      277
Simplification of rule base      285ff
Simulated annealing      197
Singleton      278
Smoothness degree      126
Soft computing      3ff
Soma      81
Spectral analysis      39
Spectral expansion technique      41
Spread parameter      87
Sprecher theorem      108
State-space equations      91
State-space modelling      36
State-space models      38
Stationarity      18
Stationary model      19
Statistical bias      119
Statistical learning theory      337
Statistical modelling approach      136
Statistical variance      119
Step function      111
Stochastic biochemical networks      335
Stochastic difference equation      36
Stochastic machines      335
Stopping criterion      117 118 123
Stopping with cross-validation      120
Structural risk minimisation      337
Structuring of data      105
Summation unit      95
Supervised learning      85
Supervised learning algorithms      95
Supervised mode      4 112
Supervisory mode      4
Support vector machines      335 337ff
Support vectors      338
Survival of the fittest principle      196 215
Swarm engineering      337
Synaptic weights      96
T-norm      151 228
Takagi — Sugeno fuzzy model      232
Takagi — Sugeno fuzzy system      148
Takagi — Sugeno inference system      153ff
Technology merging      223
Test set      118
Theory of belief      6
Tikhonov functional      126
Time domain approach      18
Time domain models      37
Time series, analysis      17 25ff
Time series, classification      22ff
Time series, modelling      26
Time series, models      26
Tool wear monitoring      68 268ff
Traditional problem definition      18ff
Training, algorithm for neuro-fuzzy network      234
Training, efficiency merit      116
Training, set of data      105
Training, stopping and evaluation      116ff
Training, strip length      119
Trajectory learning      90
Transfer function models      37
Translation coefficients      348
Transparent fuzzy modelling scheme      279
Transparent modelling scheme      279
Transparent partitioning      298
Trend      18 20
Trend cycle      21
Triangular-conorm      228 229
Uncertain information      6
Unconstrained minimisation      96
Underfitting problem      119
Univariate forecasts      50
Univariate time series      23
Universal approximator      84 129 348
Universal fuzzy set      278
Universe of discourse      144
Unsupervised clustering      87
Unsupervised mode      4 112
Validation set of data      106 118
Vapnik — Chervonenkis dimension      108 337
Wavelet neural networks      335 346ff
Wavelet theory      345ff
Wavelet transform      345
Wavelets      86
Wavelets networks      345ff
Weakest-link-in-the-chain analysis      116
Weierstrass theorem      129
Weight decay approach      125
Weight elimination approach      125
White-box models      276
Wildness factor      246
Winner-takes-all fashion      92
World's decomposition      23
Xie — Benie's index      181 280 355
Yule — Walker equation      44 47
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте