Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Popovic D., Palit A.K. — Computational Intelligence in Time Series Forecasting: Theory and Engineering Applications
Popovic D., Palit A.K. — Computational Intelligence in Time Series Forecasting: Theory and Engineering Applications



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Computational Intelligence in Time Series Forecasting: Theory and Engineering Applications

Авторы: Popovic D., Palit A.K.

Аннотация:

Foresight in an engineering enterprise can make the difference between success and failure and can be vital to the effective control of industrial systems. Forecasting the future from accumulated historical data is a tried and tested method in areas such as engineering finance. Applying time series analysis in the on-line milieu of most industrial plants has been more problematic because of the time and computational effort required. The advent of soft computing tools such as the neural network and the genetic algorithm offers a solution.

Chapter by chapter, Computational Intelligence in Time Series Forecasting harnesses the power of intelligent technologies individually and in combination. Examples of the particular systems and processes susceptible to each technique are investigated, cultivating a comprehensive exposition of the improvements on offer in quality, model building and predictive control, and the selection of appropriate tools from the plethora available; these include:

• forecasting electrical load, chemical reactor behaviour and high-speed-network congestion using fuzzy logic;

• prediction of airline passenger patterns and of output data for nonlinear plant with combination neuro-fuzzy networks;

• evolutionary modelling and anticipation of stock performance by the use of genetic algorithms.

Application-oriented engineers in process control, manufacturing, the production industries and research centres will find much to interest them in Computational Intelligence in Time Series Forecasting and the book is suitable for industrial training purposes. It will also serve as valuable reference material for experimental researchers


Язык: en

Рубрика: Технология/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 1st edition

Год издания: 2005

Количество страниц: 396

Добавлена в каталог: 11.12.2007

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Genetic Algorithm (GA), adaptation at refinement stage      324
Genetic Algorithm (GA), adaptation at search stage      324
Genetic Algorithm (GA), adaptation of learning rate      100 246
Genetic Algorithm (GA), adaptation of population size      327
Genetic Algorithm (GA), age operator      328
Genetic Algorithm (GA), implementation      200
Genetic evolution      7
Genetic models      7 214
Genetic operators      198ff
Genetic programming (GP)      7 195 197 209ff
Genetic programming (GP), algorithm      210ff
Genotypes      307
Genotypic diversity measure      330
Genotypic representation      309
Geometric pyramid rule      109
Globally feed—forward, locally recurrent network      87
Government of genetic population      329
GP      see Genetic programming
Gradient descent law      96
Grammar re-writing rules      311
Grammatical encoding      311
Graph grammar encoding      312
Green’s function      127
Green’s matrix      128
Grossberg output layer      92
Grossberg outstar      93
Growth encoding      308
Gustafson — Kessel (GK) algorithm      183ff 352
Hard clustering      175
Hard partition      175ff
Hausdorff distance      284
HBXIO matrix      67 135
Hebbian law      88
Hebbian learning rule      112 113
Hessian matrix calculation      101ff
Hidden layers      82 107
Hierarchically organised modular systems      350
Higher-level learning process      350
HMIQ technology      9
Holt — Winter algorithm      61
Hopfield network      88 89ff
Hybrid ARIMA-neural network methodology      132
Hybrid computational technology      9
Hybrid intelligent systems      223
Hybrid training algorithm      307
Hyperbolic tangent function      111
Identification of nonlinear dynamics      249
IF-THEN rules      143 145 232 275
ill-posed problems      126
Image interpretation      336
Implication-OR neuron      230
Imprecise propositions      5
Improved BP training algorithm      238ff
Improved genetic version      211ff
Indirect encoding, approach      307
Indirect encoding, strategies      309
Inferencing of fuzzy logic systems      150
Inferencing of Mamdani model      150
Inferencing of Takagi — Sugeno model      153
Inferencing relational model      154
Inhibitory neurons      352
Initial fuzzy model      280
Initial partition matrix      182
Initialization of genetic programming      210ff
Initialization of RBF centres      87
Inner product kernel      341
Input layer      82 85
Integral wavelet transform      349
Intelligent agents      8
Intelligent signal processing      10
Interpretation and decision level      351
Iterative merging      181 292ff
Jaccard index of similarity      284 285
Jaccard similarity, index      284
Jaccard similarity, measure      291
Jacobian matrix computation      241
K-means clustering algorithm      87
Kernel function family      339
Kernel-based machine      339ff
Knowledge (fuzzy)      5
Knowledge extraction from data      336
Kohonen networks      4 353
Kolmogorov’s superposition theorem      107
Kwan fuzzy neuron      230
Layer-based encoding      308
Learning rate      114
Learning theory      4
Lethal age of chromosomes      328
Levenberg — Marquardt algorithm      100 231 239ff 246
Lifetime of chromosome      328
Linear time series      23
Linear time series, models      23 35
Linear vector quantisation      87
Linearity      18 20
Linearly separable classes      338
Linearly separable problems      82
Linguistic terms      143
Linguistic variables      148
Localized basis functions      85
Locally restricted basis functions      86
Logarithmic scaling      104
MA model      see Moving average model
Machine learning      209
Mackey — Glass chaotic time series      172
MADALINE      79 83
Mahalanobis norm      182
Mamdani fuzzy rules      148
Mamdani fuzzy system      148
Mamdani inference system      148ff 150ff
Margin of separation      338
Material property prediction      265ff
Mating pool      199
Matrix, grammar encoding      311
Matrix, inverse unit      91
Matrix, re-writing      308
Maturation operator      214
Max operator      228
Maximum likelihood estimate      110
Maximum likelihood method      45
Mean of maximum de-fuzzifier      247
Mechanism of evolution      196ff
Membership function 144ff      148 225
Mercer's theorem      342
Merging rules      290
Merging similar fuzzy sets      287ff
Min operator      228
Minimum variance control      69
Minkowski class of distance function      284
MLP      see Multilayer perceptron
MLPN      see Multilayer perceptron network
Model, accuracy      296
Model, building      42
Model, compactness      276
Model, complexity      296
Model, deterministic      26
Model, diagnostic check      48ff
Model, estimation      42 45ff
Model, estimation phase      42
Model, evaluation      280
Model, forecasting phase      42
Model, identification phase      42 43ff
Model, stochastic      26
Model, structure selection      279
Model, transparency      276
Model, validation phase      42 48ff
Modelling of nonlinear dynamics      249
Modelling of nonlinear plants      187
Modelling redundancy      279
Momentum term      99ff 114ff
Monotonic basis functions      86
Mother wavelet      345 348
Moving average (MA) model      28
Mu-matrix      162ff
Multi-agent systems      337
Multilayer network      309
Multilayer perceptron (MLP)      82
Multilayer perceptron (MLP), network (MLPN)      80 85ff
Multisensor data fusion      11
Multistep prediction      90
Multivalued logic      143
Multivariable fuzzy model      227
Multivariate forecasts      50
Multivariate models      33
Multivariate statistical analysis      136
Multivariate time series      24
Mutation      6 7 195 199 322
Mutation operators      205ff
Mutation probability      323
Nested networks      351
Network architecture      80ff
Network determination      103 106ff
Network evolution      305ff
Network growing      121
Network information criterion      110
Network initialization      112
Network overfitting      117 119
Network overtraining      117 119
Network pruning      121
Network strategy design      104
Network training methods      95ff
Network training strategy      104 112ff
Network underfitting      119
Networks training      248
Neural inputs      225
Neural network, learning algorithm      224
Neural network, representation of fuzzy logic system      233ff
Neural networks approach      79
Neural networks with fuzzy weights      224
Neural-fuzzy inference network      266
Neuro-forecasters      129ff
Neuro-fuzzy adaptive approach      232
Neuro-fuzzy method      279
Neuro-fuzzy modelling      270 275
Neuro-fuzzy network      247
Neuro-fuzzy predictor      267
Neuro-fuzzy systems      4
Neurobiology      9
Neurocomputing      3
Neurodynamic programming      335
Neurodynamics      335
Neuroinformatics      9 335
neuron      81
NIC      see Network information criterion
NL dynamics      see Nonlinear dynamics
Node-based encoding      308
Non-monotone neural networks      351
Non-symbolic methodology      275
Noninfluential singleton      278
Noninterpretable fuzzy set      278
Nonlinear combination of forecasts      64 132ff
Nonlinear dynamics      249
Nonlinear regression estimation      344
Nonlinear scaling      104
Nonlinear time series      23
Nonlinear time series, models      35
Norm inducing matrix      182
Normalization of data      104
Number of hidden neurons      108
Number of input nodes      107
Number of lagged values      106
Number of output nodes      107
Objective forecasts      50
Objectives of analysis      25
Objects      174
Observation matrix      39 105
Observation of vector      39 105
Occam’s razor philosophy      125
Offspring      196
Optimal brain damage      122 123
Optimal brain surgeon      122 123
Optimal hyperplane      338
Optimal path planning      11
OR fuzzy neuron      229ff
Orderly configured data set      356
Oscillation control      246
Outliers      177
Output decisions      225
Output layer      82
Output weight training of RBF      87
Overall network evaluation      104
Overfitting      111
Overtraining      125
Parameterised encoding      311
Parameters of fuzzy c-means algorithm      180ff
Parameters to be adapted      322ff
Parse trees      209
Partial autocorrelation function      44
Partially bounded open systems      350
Particle swarm optimisation      336
Pattern matrix      174
Pattern unit      95
Pbest solution      336
Penalty term method      121
Perceptron      4 81
Perceptual knowledge      336
Performance-to-cost ratio      117
Permutation problem      311
Phenotypes      307
Phenotypic diversity measure      330
Phylogenetic adaptation      213
Polynomial ADALINE      94
Polynomial curve fitting      120
Polynomial kernels      341
Population      6 196
Population level      322
Population member      196
Population of parents      214
Population size      323
Population survival      196
Population, age structure      328
Possibilistic partition      177
Possibilistic reasoning      5
Possibility distribution      6
Possibility theory      6
Potential function approach      85
Potential measure      356
Pre-processing of data      104
Precise propositions      5
Predicate logic      5
Prediction of chaotic time series      253ff
Principal components analysis      34 124
Probabilistic neural networks      80 94ff
Probabilistic parameters control      323ff
Probabilistic reasoning      3 4ff
probability      5 6
Probability, density function      95
Processing elements      83
Product inference rules      247
Product operator      153
Production monitoring      68
Propositional calculus      5
Prototype wavelet      345
Pruning methods      123
Pure network architecture      310ff
Quality prediction of crude oil      67
Radial basis function, (RBF)      85
Radial basis neural networks      80 85 247
Radial-basis-function-based support vector machine      344
Ramp function      111
Randomness      5
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте