Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Shankar R. — Basic Training In Mathematics
Shankar R. — Basic Training In Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Basic Training In Mathematics

Автор: Shankar R.

Аннотация:

Based on course material used by the author at Yale University, this practical text addresses the widening gap found between the mathematics required for upper-level courses in the physical sciences and the knowledge of incoming students. This superb book offers students an excellent opportunity to strengthen their mathematical skills by solving various problems in differential calculus. By covering material in its simplest form, students can look forward to a smooth entry into any course in the physical sciences.


Язык: en

Рубрика: Математика/Математическая Физика/Учебники/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1995

Количество страниц: 390

Добавлена в каталог: 25.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Laplacian      192
LCR circuit      98
LCR circuit, impedance      101
LCR circuit, mechanical analogy      104
LCR circuit, transients in      103
Legendre polynomial      324
Legendre’s equation      324
Level surface      168
Line integral      159
linear combination      3
Linear dependence      233
Linear independence      233
Linear operators      247
Linear operators, adjoint of      252
Linear operators, D and -iD operators      279
Linear operators, definition of      248
Linear operators, eigenvalue problem of      255
Linear operators, matrix elements of      249
Linear operators, product of      251 252
Linear transformation      209
Linear vector spaces      229
Linear vector spaces, adjoint operation      254
Linear vector spaces, axioms of      230
Linear vector spaces, basis for      235
Linear vector spaces, dimension of      235 246
Linear vector spaces, dual spaces      253
Linear vector spaces, eigenvalue problem      255
Linear vector spaces, examples      239
Linear vector spaces, expansion of vectors in      242 243
Linear vector spaces, expansion of vectors in orthonoimal basis      242
Linear vector spaces, field of      231
Linear vector spaces, function spaces      277
Linear vector spaces, generation of basis for      279
Linear vector spaces, Gram — Schmidt procedure for      244
Linear vector spaces, inner product for      237 239
Linear vector spaces, linear operators acting on      247
Linear vector spaces, over complex field      231
Linear vector spaces, real      231
Linear vector spaces, Schwarz inequality      246
Linear vector spaces, Triangle inequality      246
ln, branch point of      124
ln, branches of      124
ln, ln(x)      15
ln, ln(z)      121
LOG      see “ln”
Lorentz force law      194
Lorentz gauge condition      202
L’HopitaFs rule      24
Matrix inverse      211 212 216
Matrix product      206
Matrix sum      206
Matrix transpose      215
Matrix, adjoint      220 225
Matrix, analogy to numbers      225
Matrix, antihermitian      221
Matrix, antisymmetric      220
Matrix, commutator of      210
Matrix, dagger      220
Matrix, determinant of      211
Matrix, Dirac      227
Matrix, elements      205
Matrix, for rotation      208
Matrix, functions of      222
Matrix, hermitian      221
Matrix, inverse      211 216
Matrix, null      209
Matrix, orthogonal      222
Matrix, Pauli      226
Matrix, product of      206
Matrix, simultaneous equations      212
Matrix, sum of      206
Matrix, symmetric      220
Matrix, table of properties      222
Matrix, trace of      227
Matrix, transpose      215
Matrix, unit      209
Matrix, unitary      221
Maxima, minima and saddle points      274
Maxwell’s equations      200
Meromorphic functions      113
Mixed derivative      52
Modulus      90
Moment of inertia tensor      298
Natural logarithm      7 8
Norm of a vector      149
Normal modes      267 272
Normal modes, in quantum mechanics      273
Normal modes, of coupled masses      267
Normal modes, of string      289
Null vector      149 230
Ohm’s Law      295
Ordinary differential equation (ODE)      307
Ordinary differential equation (ODE), Bessel’s equation      327
Ordinary differential equation (ODE), classical oscillator      311
Ordinary differential equation (ODE), complimentary function      313
Ordinary differential equation (ODE), Frobenius method      318 324
Ordinary differential equation (ODE), Hermite’s equation      322
Ordinary differential equation (ODE), initial conditions      308
Ordinary differential equation (ODE), integration constants      307
Ordinary differential equation (ODE), Laguerre’s equation      328
Ordinary differential equation (ODE), Legendre’s equation      324
Ordinary differential equation (ODE), particular solution      313
Ordinary differential equation (ODE), quantum oscillator      320
Ordinary differential equation (ODE), with constant coefficients      307
Ordinary differential equation (ODE), with variable coefficients (first order)      315
Ordinary differential equation (ODE), with variable coefficients (second order)      318
Orthogonal coordinates      65
Orthogonal matrix      221
Orthonormal basis      149 239
Orthonormal basis, expansion of a vector in      242
Oscillator, action for      309
Oscillator, analogies to LCR circuit      104
Oscillator, equations for      104 311
Oscillator, quantum      320
Oscillator, types of behavior      311
Outer product      297
Parseval’s theorem      293
Partial derivative      51
Partial differential equation (PDE)      329
Partial differential equation (PDE), heat equation in d = 1, 2      336
Partial differential equation (PDE), polar coordinates      334 343
Partial differential equation (PDE), separation of variables      329
Partial differential equation (PDE), solution by Green’s functions      344
Partial differential equation (PDE), wave equation in d = 1, 2      329
Particular solution      103 313
Passive transformation      208
Pauli matrices      226
Permanence of relations      143
Permeability of free space      172
Permittivity of free space      166
Pi ($\pi$)      20
Planck’s constant      288
Plotting functions      23
Poisson’s solution      344
Polar coordinates      64
Polar form      94
Polarizability tensor      299
Poles, n-th order      113
Poles, residue at      112
Poles, simple      112
Position vector      156
Potential      175
Power series, absolute convergence      80 116
Power series, hyperbolic functions      19 119
Power series, in x      80
Power series, in z      116
Power series, interval of convergence of      10 81
Power series, ln(1 + x)      15 85
Power series, radius of convergence      118
Power series, tests for convergence      80
Power series, tricks for expansion in      83
Power series, trigonometric functions      22 119
primitive      37
Principal axes      298
Projection operator      210
Propagator      271
Quadratic forms      274
Quadratic forms, diagonalization of      274
Quantum oscillator      320
RADIANS      19
Radius of convergence      118
Rank of tensor      296
Rapidity      27
Ratio test for series      10 78
Real part      90
Reciprocal vectors      219
Recursion relation      319
Recursion relation for Bessel functions      327
Recursion relation for Hermite polynomials      322
Recursion relation for quantum oscillator      322
Removable singularity      113
Residue      112
Residue Theorem (Cauchy)      132 134
Right-hand rule      154
Right-handed coordinates      151
Roots in complex plane      122
Rotation matrix      208
Row vector      206
Saddle point      54
Saddle point of quadratic forms      274 276
Scalar field      158
Scalar field, gradient of      167
Scalar potential      201
Scalar triple product      155 (see also “Box”)
Scale factor      65
Schwarz inequality      246
Screened Poisson equation      345
Screw rule      156
Second Order ODE      318
Separation of variables      329
Series      75
Series, absolute convergence      80 117
Series, comparison test      77
Series, conditional convergence      80
Series, geometric      76
Series, in complex variable      117
Series, integral test      78
Series, ratio test      78
Series, tests for convergence      77
Simultaneous equations      212
Singularities      111
Solid angle      68 70
Space-time interval      26
Spherical coordinates      66
Spin      265
State vector      269
Stationary point      53
Stationary point, and quadratic forms      274
Stationary point, with constraints      55
Steady state response      104
Stokes’ Theorem      179
String      289
String, normal modes of      289
String, separation of variables for      329
Superposition principle      100 195 306
Surface integral      159 162 164
Surface term in integrals      42
Taylor series, and essential singularities      83 141
Taylor series, in a complex variable      139
Taylor series, single variable      8 10
Taylor series, two variables      52
Tensors      294
Tensors, antisymmetric tensor      297
Tensors, conductivity      296
Tensors, contraction      296
Tensors, moment of inertia      298
Tensors, outer product      297
Tensors, polarizability      299
Tensors, rank of      296
Time derivatives of vectors      156
torque      154
Trace of matrix      227
Transients      103
Transpose of a product      220
Transpose of matrix      215
Triangle inequality      246
Trigonometric functions, and hyperbolic functions      121
Trigonometric functions, in x      19
Trigonometric functions, in z      115
Trigonometric functions, power series for      22
Uncertainty principle      288
Unit matrix      209
Unit vector      149
Unitary matrix      221
Unitary operators      260
vector calculus      149
Vector calculus, applications to electrodynamics      193 (see also “Electrodynamics”)
Vector calculus, conservative field      162
Vector calculus, curl of vector field      172
Vector calculus, digression on integral theorems      190
Vector calculus, digression on vector identities      190
Vector calculus, divergence of vector field      182
Vector calculus, gradient of scalar field      167
Vector calculus, Green’s theorem      174
Vector calculus, higher derivatives      189
Vector calculus, integral theorems in      188
Vector calculus, Laplacian      192
Vector calculus, line and surface integrals      159
Vector calculus, potential of conservative field      175
Vector calculus, Stokes’ theorem      179
Vector calculus, vector analysis review      149
Vector field      158
Vector field, circulation of      172
Vector field, curl of      172
Vector field, divergence of      182
Vector field, Gauss’s Law for      184
Vector field, Green’s Theorem for      174
Vector field, line integral of      159
Vector field, Stokes’ Theorem for      179
Vector field, surface integral of      162
Vector potential      201
Vectors, cross product for      153
Vectors, dot product for      151
Vectors, in polar coordinates      157
Vectors, introduction      149
Vectors, time derivative of      154
Velocity vector      156
Wave equation      200
Wave equation, circular drum      332
Wave equation, d= 1, 2      329
Wave equation, separation of variables      329
Wave equation, square drum      328
Zero matrix      209
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте