| 
		        
			        |  |  
			        |  |  
					| Авторизация |  
					|  |  
			        |  |  
			        | Поиск по указателям |  
			        | 
 |  
			        |  |  
			        |  |  
			        |  |  
                    |  |  
			        |  |  
			        |  |  |  | 
		|  |  
                    | Shankar R. — Basic Training In Mathematics |  
                    |  |  
			        |  |  
                    | Предметный указатель |  
                    | | Laplacian      192 LCR circuit      98
 LCR circuit, impedance      101
 LCR circuit, mechanical analogy      104
 LCR circuit, transients in      103
 Legendre polynomial      324
 Legendre’s equation      324
 Level surface      168
 Line integral      159
 linear combination      3
 Linear dependence      233
 Linear independence      233
 Linear operators      247
 Linear operators, adjoint of      252
 Linear operators, D and -iD operators      279
 Linear operators, definition of      248
 Linear operators, eigenvalue problem of      255
 Linear operators, matrix elements of      249
 Linear operators, product of      251 252
 Linear transformation      209
 Linear vector spaces      229
 Linear vector spaces, adjoint operation      254
 Linear vector spaces, axioms of      230
 Linear vector spaces, basis for      235
 Linear vector spaces, dimension of      235 246
 Linear vector spaces, dual spaces      253
 Linear vector spaces, eigenvalue problem      255
 Linear vector spaces, examples      239
 Linear vector spaces, expansion of vectors in      242 243
 Linear vector spaces, expansion of vectors in orthonoimal basis      242
 Linear vector spaces, field of      231
 Linear vector spaces, function spaces      277
 Linear vector spaces, generation of basis for      279
 Linear vector spaces, Gram — Schmidt procedure for      244
 Linear vector spaces, inner product for      237 239
 Linear vector spaces, linear operators acting on      247
 Linear vector spaces, over complex field      231
 Linear vector spaces, real      231
 Linear vector spaces, Schwarz inequality      246
 Linear vector spaces, Triangle inequality      246
 ln, branch point of      124
 ln, branches of      124
 ln, ln(x)      15
 ln, ln(z)      121
 LOG      see “ln”
 Lorentz force law      194
 Lorentz gauge condition      202
 L’HopitaFs rule      24
 Matrix inverse      211 212 216
 Matrix product      206
 Matrix sum      206
 Matrix transpose      215
 Matrix, adjoint      220 225
 Matrix, analogy to numbers      225
 Matrix, antihermitian      221
 Matrix, antisymmetric      220
 Matrix, commutator of      210
 Matrix, dagger      220
 Matrix, determinant of      211
 Matrix, Dirac      227
 Matrix, elements      205
 Matrix, for rotation      208
 Matrix, functions of      222
 Matrix, hermitian      221
 Matrix, inverse      211 216
 Matrix, null      209
 Matrix, orthogonal      222
 Matrix, Pauli      226
 Matrix, product of      206
 Matrix, simultaneous equations      212
 Matrix, sum of      206
 Matrix, symmetric      220
 Matrix, table of properties      222
 Matrix, trace of      227
 Matrix, transpose      215
 Matrix, unit      209
 Matrix, unitary      221
 Maxima, minima and saddle points      274
 Maxwell’s equations      200
 Meromorphic functions      113
 Mixed derivative      52
 Modulus      90
 Moment of inertia tensor      298
 Natural logarithm      7 8
 Norm of a vector      149
 Normal modes      267 272
 Normal modes, in quantum mechanics      273
 Normal modes, of coupled masses      267
 Normal modes, of string      289
 Null vector      149 230
 Ohm’s Law      295
 Ordinary differential equation (ODE)      307
 Ordinary differential equation (ODE), Bessel’s equation      327
 Ordinary differential equation (ODE), classical oscillator      311
 Ordinary differential equation (ODE), complimentary function      313
 Ordinary differential equation (ODE), Frobenius method      318 324
 Ordinary differential equation (ODE), Hermite’s equation      322
 Ordinary differential equation (ODE), initial conditions      308
 Ordinary differential equation (ODE), integration constants      307
 Ordinary differential equation (ODE), Laguerre’s equation      328
 Ordinary differential equation (ODE), Legendre’s equation      324
 Ordinary differential equation (ODE), particular solution      313
 Ordinary differential equation (ODE), quantum oscillator      320
 Ordinary differential equation (ODE), with constant coefficients      307
 Ordinary differential equation (ODE), with variable coefficients (first order)      315
 Ordinary differential equation (ODE), with variable coefficients (second order)      318
 Orthogonal coordinates      65
 Orthogonal matrix      221
 Orthonormal basis      149 239
 Orthonormal basis, expansion of a vector in      242
 Oscillator, action for      309
 Oscillator, analogies to LCR circuit      104
 Oscillator, equations for      104 311
 Oscillator, quantum      320
 Oscillator, types of behavior      311
 Outer product      297
 Parseval’s theorem      293
 Partial derivative      51
 Partial differential equation (PDE)      329
 Partial differential equation (PDE), heat equation in d = 1, 2      336
 Partial differential equation (PDE), polar coordinates      334 343
 Partial differential equation (PDE), separation of variables      329
 Partial differential equation (PDE), solution by Green’s functions      344
 Partial differential equation (PDE), wave equation in d = 1, 2      329
 Particular solution      103 313
 Passive transformation      208
 Pauli matrices      226
 Permanence of relations      143
 Permeability of free space      172
 Permittivity of free space      166
 Pi (
  )      20 Planck’s constant      288
 Plotting functions      23
 Poisson’s solution      344
 Polar coordinates      64
 Polar form      94
 Polarizability tensor      299
 Poles, n-th order      113
 Poles, residue at      112
 Poles, simple      112
 Position vector      156
 
 | Potential      175 Power series, absolute convergence      80 116
 Power series, hyperbolic functions      19 119
 Power series, in x      80
 Power series, in z      116
 Power series, interval of convergence of      10 81
 Power series, ln(1 + x)      15 85
 Power series, radius of convergence      118
 Power series, tests for convergence      80
 Power series, tricks for expansion in      83
 Power series, trigonometric functions      22 119
 primitive      37
 Principal axes      298
 Projection operator      210
 Propagator      271
 Quadratic forms      274
 Quadratic forms, diagonalization of      274
 Quantum oscillator      320
 RADIANS      19
 Radius of convergence      118
 Rank of tensor      296
 Rapidity      27
 Ratio test for series      10 78
 Real part      90
 Reciprocal vectors      219
 Recursion relation      319
 Recursion relation for Bessel functions      327
 Recursion relation for Hermite polynomials      322
 Recursion relation for quantum oscillator      322
 Removable singularity      113
 Residue      112
 Residue Theorem (Cauchy)      132 134
 Right-hand rule      154
 Right-handed coordinates      151
 Roots in complex plane      122
 Rotation matrix      208
 Row vector      206
 Saddle point      54
 Saddle point of quadratic forms      274 276
 Scalar field      158
 Scalar field, gradient of      167
 Scalar potential      201
 Scalar triple product      155 (see also “Box”)
 Scale factor      65
 Schwarz inequality      246
 Screened Poisson equation      345
 Screw rule      156
 Second Order ODE      318
 Separation of variables      329
 Series      75
 Series, absolute convergence      80 117
 Series, comparison test      77
 Series, conditional convergence      80
 Series, geometric      76
 Series, in complex variable      117
 Series, integral test      78
 Series, ratio test      78
 Series, tests for convergence      77
 Simultaneous equations      212
 Singularities      111
 Solid angle      68 70
 Space-time interval      26
 Spherical coordinates      66
 Spin      265
 State vector      269
 Stationary point      53
 Stationary point, and quadratic forms      274
 Stationary point, with constraints      55
 Steady state response      104
 Stokes’ Theorem      179
 String      289
 String, normal modes of      289
 String, separation of variables for      329
 Superposition principle      100 195 306
 Surface integral      159 162 164
 Surface term in integrals      42
 Taylor series, and essential singularities      83 141
 Taylor series, in a complex variable      139
 Taylor series, single variable      8 10
 Taylor series, two variables      52
 Tensors      294
 Tensors, antisymmetric tensor      297
 Tensors, conductivity      296
 Tensors, contraction      296
 Tensors, moment of inertia      298
 Tensors, outer product      297
 Tensors, polarizability      299
 Tensors, rank of      296
 Time derivatives of vectors      156
 torque      154
 Trace of matrix      227
 Transients      103
 Transpose of a product      220
 Transpose of matrix      215
 Triangle inequality      246
 Trigonometric functions, and hyperbolic functions      121
 Trigonometric functions, in x      19
 Trigonometric functions, in z      115
 Trigonometric functions, power series for      22
 Uncertainty principle      288
 Unit matrix      209
 Unit vector      149
 Unitary matrix      221
 Unitary operators      260
 vector calculus      149
 Vector calculus, applications to electrodynamics      193 (see also “Electrodynamics”)
 Vector calculus, conservative field      162
 Vector calculus, curl of vector field      172
 Vector calculus, digression on integral theorems      190
 Vector calculus, digression on vector identities      190
 Vector calculus, divergence of vector field      182
 Vector calculus, gradient of scalar field      167
 Vector calculus, Green’s theorem      174
 Vector calculus, higher derivatives      189
 Vector calculus, integral theorems in      188
 Vector calculus, Laplacian      192
 Vector calculus, line and surface integrals      159
 Vector calculus, potential of conservative field      175
 Vector calculus, Stokes’ theorem      179
 Vector calculus, vector analysis review      149
 Vector field      158
 Vector field, circulation of      172
 Vector field, curl of      172
 Vector field, divergence of      182
 Vector field, Gauss’s Law for      184
 Vector field, Green’s Theorem for      174
 Vector field, line integral of      159
 Vector field, Stokes’ Theorem for      179
 Vector field, surface integral of      162
 Vector potential      201
 Vectors, cross product for      153
 Vectors, dot product for      151
 Vectors, in polar coordinates      157
 Vectors, introduction      149
 Vectors, time derivative of      154
 Velocity vector      156
 Wave equation      200
 Wave equation, circular drum      332
 Wave equation, d= 1, 2      329
 Wave equation, separation of variables      329
 Wave equation, square drum      328
 Zero matrix      209
 
 | 
 |  |  |  | Реклама |  |  |  |  |  |