Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 3) Scattering theory
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 3) Scattering theory



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Methods of Modern mathematical physics (vol. 3) Scattering theory

Авторы: Reed M., Simon B.

Аннотация:

Scattering theory is the study of an interacting system on a scale of time and/or distance which is large compared to the scale of the interaction itself. As such, it is the most effective means, sometimes the only means, to study microscopic nature. To understand the importance of scattering theory, consider the variety of ways in which it arises. First, there are various phenomena in nature (like the blue of the sky) which are the result of scattering. In order to understand the phenomenon (and to identify it as the result of scattering) one must understand the underlying dynamics and its scattering theory. Second, one often wants to use the scattering of waves or particles whose dynamics on knows to determine the structure and position of small or inaccessible objects. For example, in x-ray crystallography (which led to the discovery of DNA), tomography, and the detection of underwater objects by sonar, the underlying dynamics is well understood. What one would like to construct are correspondences that link, via the dynamics, the position, shape, and internal structure of the object to the scattering data. Ideally, the correspondence should be an explicit formula which allows one to reconstruct, at least approximately, the object from the scattering data. The main test of any proposed particle dynamics is whether one can construct for the dynamics a scattering theory that predicts the observed experimental data. Scattering theory was not always so central the physics. Even thought the Coulomb cross section could have been computed by Newton, had he bothered to ask the right question, its calculation is generally attributed to Rutherford more than two hundred years later. Of course, Rutherford's calculation was in connection with the first experiment in nuclear physics.


Язык: en

Рубрика: Математика/Математическая Физика/Учебники/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1979

Количество страниц: 463

Добавлена в каталог: 24.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Paley — Wiener theorems      16 17 18 23 109
Parseval’s relation      45—46
Partial wave expansion      128
Partial wave scattering amplitudes      128
Partial wave unitarity      130
Partition      323
Pauli matrices      287
Pearson’s counterexample      71
Pearson’s theorem      24
Periodic potentials      279
Phase shifts      129
Phase space      5
Plancherel theorem      10
Polar decomposition      197 297
Polarization identity      63
Positive commutators      427
Positive operator      195
Principle of least action      279
Principle of uniform boundedness      81
Product formula      295—297 245
Projection      187
Projection valued measure (p.v.m.)      234—235 262—263
Putnam — Kato theorem      427
Quadratic forms      276
Quadratic forms, closed      277
Quadratic forms, form core      277
Quadratic forms, form domain      276l
Quadratic forms, Friedrichs’ extension      177
Quadratic forms, infinitesimally bounded      168
Quadratic forms, positive      276
Quadratic forms, relatively bounded      168
Quadratic forms, relatively compact      369
Quantum field scattering, external field      293—316
Quantum field scattering, Haag — Ruelle theory      317—330
Quantum scattering, central potentials      121—168
Quantum scattering, dispersion relations      116—120
Quantum scattering, eigenfunction expansions      96—115
Quantum scattering, long-range potentials      169—183
Quantum scattering, N-body      75—95
Quantum scattering, two-body      54—74
RAGE theorem      341
Rearrangement collisions      77
Reduction formulas      381
Reduction of the S-matrix      121
refinement      89
Regular equation      136
Regular operator      234
Regular pair      244
Regular solution      137
Regular wave packet      42
Relatively bounded      162
Relatively compact      113
Relatively form bounded      168
Relatively form compact      369
Resolvent      188 253
Resolvent set      188 253
Resonance poles      144
Restricted cone property      204
Riemann — Lebesgue lemma      10
Riesz’s lemma      43
Right-hand cut      145
Rollnik class      99
Rosenberg — Spruch bound      148
S-matrix, S-Operator      see “Scattering operator”
Scattering amplitude      111 127
Scattering amplitude, forward      117
Scattering angle      14
Scattering length      136
Scattering operator, external quantum fields      307
Scattering operator, Lax — Phillips method      212
Scattering operator, quantum fields      322
Scattering operator, quantum mechanics      73 87
Scattering operator, quantum mechanics, cluster properties      93
Scattering theory, acoustical      184—243
Scattering theory, classical particles      5—15
Scattering theory, Enss’s method      331—343
Scattering theory, external quantum fields      293—316
Scattering theory, Hilbert space methods      16—36
Scattering theory, Lax — Phillips method      210—242
Scattering theory, long-range      169—183
Scattering theory, nonlinear wave equations      252—277
Scattering theory, on $C^*$-algebras      382—384
Scattering theory, optical      184—243
Scattering theory, quantum mechanics, 2-body      54—74
Scattering theory, quantum mechanics, central potentials      121—168
Scattering theory, quantum mechanics, dispersion relations      116—120
Scattering theory, quantum mechanics, eigenfunction expansions      96—115
Scattering theory, quantum mechanics, long-range      169—183
Scattering theory, quantum mechanics, N-body      75—95
Scattering theory, spin waves      285—292
Scattering transformation      3 13
Schrodinger equation      303
Schrodinger integral equation      136 137
Schwartz space      133
Schwarz inequality      38
Self-adjoint operator, bounded      187
Self-adjoint operator, unbounded      255
Semibounded operator      137
Semibounded quadratic form      276
Semicomplete wave operator      35
Semigroup, $L^p$-contractive      255
Semigroup, contraction      235
Semigroup, holomorphic      248 252
Semigroup, hypercontractive      258
Semigroup, infinitesimal generator      237 246 248
Semigroup, strongly continuous      235
Singular continuous spectrum, absence of      406—453
Smooth boundary      209
Smooth perturbations      411—437
Smooth solutions of the Klein — Gordon equation      43
Sobolev inequality      31 113
Sobolev lemma      52
Sobolev spaces      50 253
Source      281
Spatial cluster properties      93
Spectral mapping theorem      222 109 181—1834
Spectral measures      228
Spectral measures, associated with a vector      22 5
Spectral projections      234
Spectral theorem, functional calculus form      225 263
Spectral theorem, multiplication operator form      227 260
Spectral theorem, p.v.m.form      235 263—264
Spectrum      188
Spectrum, absolutely continuous      231
Spectrum, approximate point      178
Spectrum, asymptotically in a set      46
Spectrum, continuous      231
Spectrum, continuous singular      231
Spectrum, discrete      236 13
Spectrum, essential      236
Spectrum, point      188 231
Spectrum, residual      188
Spherical Bessel functions      153
Spin down      287
Spin up      287
Starlike      209
Stationary methods      354
Stationary phase      37
Stone’s formula      237
Strong operator topology      182
Strong resolvent sense, convergence in      284—291
Strongly continuous semigroup      235
Strongly continuous unitary group      265
Strongly semibounded local perturbation of $\Delta$      67
subchannels      92
Subcritical      249
Subordinate operators      28
Support of a distribution      139 17
Support of a distribution, singular      88
Symmetric operator      255
Symmetric quadratic form      276
Symplectic transformation      376
T-matrix      107
Tensor product, Hilbert spaces      49
Tensor product, operators      299
Tensor product, operators, spectrum of      177
Threshold for channel a      124
Time delay      14
Time-dependent Schrodinger equation      61
Time-zero fields      300
Trace class      207—210
Transport equation      243
Trotter product formula      295—297 245
Truncated cone      204
Truncated vacuum expection value      323
Twisting trick      241
Uniform boundedness principle      see “Principle of uniform boundedness”
Uniform operator topology      182
Unitarity cut      145
Unitarity relation for the T-matrix      110
Unitary operator      39
Ursell functions      381
Variable phase equation      133
von Neumann’s theorem      268 143 180
von Neumann’s uniqueness theorem      217 275
Wave operators, complete      35
Wave operators, generalized      17
Wave operators, semicomplete      35
Weak asymptotic completeness      3
Weak topology      93 111
Weak-$L^p$      30
Weak-$L^p$, inequalities      32
Weakly coupled quantum systems      421
Weakly measurable (vector-valued) function      114
Weighted $L^2$ space      76 438
Wiener’s theorem      340
Young’s inequality      28
Yukawa potential      120
Yukawa potential, generalized      120
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте