|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Nash C. — Differential Topology and Quantum Field Theory |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Gauge fixing 218 349
Gauge orbits 218 271 323
Gauge system 318
Gauge transformations 175 177 216—217 234 257—258 269 281 283 297
Gauge transformations, and ellipticity 230
Gauge transformations, generated by the Higgs field 252
Gauss — Bonnet theorem 104 134 152 163
Gauss’s law 297
Germs 58 (see also sheaves)
Ghosts 218 347
Global anomaly 270 286—290 294
Gradient flow 212 327—329
Grassmannian 71—73
Gravitational anomaly 280 (see also anomalies)
Green’s function 28—30 33 34 344
Gribov ambiguity 219
Group extensions 178—185
Group extensions, central 179—183
Group extensions, non-central 183—185
H-space 8—10 12
Hamiltonian and anomalies 291—300
Handle 1 139 143 156
Harmonic forms 148
harmonic oscillator 211
Harmonic spinor 115
Heat equation 33—35
Heat equation, and the index theorem 132
Height function 196—204
hessian 193 197 199 212
Hessian, and the Yang — Mills action 258
Hessian, unbounded and Floer theory 325—326
Higgs field 248 252—253 257
Highest weight representation 186—191
Highest weight representation, and conformal field theory 309
Hodge numbers 108 148
Hodge theory 93 110 115 147—148 164 332 350
Holomorphic sections 58 139 142 146
Holomorphic sections, and conformal field theory 317
Holomorphic sections, and sheaves 58—59
Holomorphic sections, and the Borel-Weil theorem 189—191
Holomorphic sections, and the Weierstrass gap theorem 166—168
Holonomy group 218 232
Homeomorphisms 2 19 340
Homfly polynomial 341 360
Homology sphere 337—338 (see also homology 3-sphere)
Homology, 3—sphere 323 325 329—330 336—338
Homotopy classes 5—10 16 21 72 88 90
Homotopy equivalence 4 12 221—222 293
Homotopy groups 3 7 9—14
Homotopy groups, and Fredholm operators 294
Homotopy groups, and gauge transformations 219—222
Homotopy groups, and K-theory 72—75
Homotopy groups, and obstruction theory 21—22
Homotopy lifting property 17—18
Homotopy quotient 202—203
Homotopy type 4—5 12 219
Homotopy type, and Bott periodicity 76
Homotopy type, and fibrations 18
Homotopy type, and Fredholm operators 293—294
Homotopy type, and Morse theory 196
Homotopy type, and spectral flow 296
Homotopy type, of 24
Hopf algebra 222
Hurewicz isomorphism 14
Huyghen’s principle 30
Hyperbolic equations 31
Hyperbolic monopoles see Monopoles
Hyperbolic plane 151 156
Hyperbolic space 247
Hyperbolic space, and hyperbolic monopoles 247—249
Hyperbolic space, and instanton moduli 241
Hyperkhler manifold 255
Hypo-elliptic operators 33
Hypo-ellipticity 32—35
Hypo-ellipticity, and supports of pseudo-differential operators 47
Index bundle 293—294
Index of elliptic operators 41 89—136
Index of elliptic operators, acting on functions 100—101
Index of elliptic operators, analytical see analytical index
Index of elliptic operators, and families of operators 118—122
Index of elliptic operators, and fixed point theory 122—127
Index of elliptic operators, and manifolds with boundary 127—136 288
Index of elliptic operators, and odd dimensional manifolds 98—99
Index of elliptic operators, and the Gauss — Bonnet theorem 104—106
Index of elliptic operators, and the Hirzebruch signature theorem 112
Index of elliptic operators, and the Lefschetz fixed point theorem 123—126
Index of elliptic operators, and the Riemann — Roch theorem 108
Index of elliptic operators, cohomological formula for 98 103 237
Index of elliptic operators, the operator 103 117
Index of elliptic operators, the operator 106—108 117
Index of elliptic operators, the Dirac operator 112—116 118 270
Index of elliptic operators, the signature operator 108—112 118
Index of elliptic operators, topological see Topological index
Index of elliptic operators, twisted operators 116—118
Index theorem of Atiyah and Singer 97
Inductive limit 71
Infinite dimensional groups 170—191
Infinite dimensional groups, the diffeomorphism group 174
Infinite dimensional groups, the group 171—174
Infinite dimensional groups, the group of gauge transformations 175—177
Infinite dimensional groups, the loop group 174—175
Infinite dimensional groups, the Virasoro group 174
Infinite dimensional manifolds 170—171 178 323
Instanton number 230
instantons 25—26 213—215 227—242 258
Instantons, and Donaldson invariants 332—339
Instantons, and Floer homology 327—330
Instantons, and Morse theory 213—215 258
Instantons, axially symmetric 246—250 253
Instantons, moduli space of 227—242
Instantons, time independent 245—246
Integrable system 173
Integral curve 159 174 212
Intersection form 23—25 108 240 338
Intersection number 143
Invariant polynomial 223 226
Inverse limit 19
Ising model 312—313
Isothermal coordinates 157
Isotopy 339—341
Jacobian variety 143
Jones polynomial 341—342
Jones polynomial, and Chern — Simons theory 343 350—359
Khler manifold 144—147 189 291 350
Khler metric 147 255—
K-theory 11 65—75
K-theory, and anomalies 275
K-theory, and Bott periodicity 75—78
K-theory, and Fredholm operators 88 293—294
K-theory, and index theory 89—91 95—96 101—102 119-126
K-theory, and the Chern character 81
Kac — Moody algebra 173 177—178 180—183 187—188 311 317
Kac — Moody algebra, and current algebra 177 178
Kac — Moody algebra, Casimir operator for 181—183
Kac — Moody algebra, representations of 187—188
Kernel 40—41 46 54 69 89 92 122 132—133 162—165 176 179 230 236 252 276 281 292 297—298
Kernel, and Fock space 297—298
Kernel, and gauge transformations 176
Kernel, for a real elliptic family 122
Kernel, Gaussian 46
Kernel, of a group extension 179
Kernel, of an elliptic operator 89 92 122 132—133
Kernel, of Laplacians 40—41 92
Kernel, of the map 69
Knot invariants 339—340
Knot invariants, Alexander polynomial 340—342
Knot invariants, Homfly polynomial 341 360
Knot invariants, Jones polynomial 341—343 350—359
Knot invariants, knot group 340
Knots 2 338—360
| Knots, and Chern-Simons theory 342—360
Knots, and skein relation 342 351 353—355
Knots, mirror image of 341
Lagrange multiplier 347
Laplacian 27—28 39—41 46 92—93 127—128 148 163—164 209 236 260 282 332 349-350
Laplacian, and Hodge theory 92—93
Laplacian, and Ray — Singer torsion 349—350
Laplacian, on a Khler manifold 148
Laurent polynomial see -polynomial
Leading symbol 33—39 42 54 93 99—100 273
Lefschetz fixed point theorem 123—126
Level, curve 29 31
Level, of a representation 188 311 317 359
Level, set 29
Level, surface 195
Lexicographic ordering 291
Lie derivative 159—160 264
Lie group 9 11 73 75 125 170—171 174 178 180 185 188 190 192 201 207 221 226—227 241
Lie group, and instanton moduli 241
Lie group, and rational homotopy 221
Lie group, infinite dimensional 171—191
Light-cone 30
links 206 205 256 339 341—345 355—356
Liouville’s theorem 58
Local coefficients 21
Local cohomology 278 280
Locally convex 171
Loop group 173—174 181—183 191
Loop group, representations of 187—188
Lusternik — Schnirelmann category 198
Mbius group 155 165 310—311 315
Magnetic charge 245 248—249 257
Magnetic monopole see Monopole
Mapping class group 152 155—156
Minima 25 229—230 244 256 258 336
Minima, and Yang — Mills action 25 229—230 258 336
Minima, and Yang — Mills — Higgs energy 244 256
Modular form 161 312
Modular functor 321
Modular group 155 161 170 317
Modular invariance 313 321
Modular transformation 155 311 359
Moduli space 26 139 152—165
Moduli space, instanton 26 227—242 333—339
Moduli space, monopole 250—256
Moduli space, of flat connections 350 360
Moduli space, Riemann 139 152—165 262 268 315
Moduli space, universal Riemann 318—319
Monopoles 242—250
Monopoles, and Morse theory 256—257
Monopoles, and rational functions 253
Monopoles, hyperbolic 246—250
Monopoles, moduli space of 250—256
Monopoles, Prasad — Sommerfield 243 252—253
Monopoles, scattering of 250 253—256
Morse theory 192—215
Morse theory, and Floer theory 322 324—326 330
Morse theory, and gauge theories 256—258
Morse theory, and the Morse inequalities 194—195 200 203 211—212 215
Morse theory, and the Morse series 193 197 199—200 203—205
Morse theory, equivariant 201—205
Morse theory, for critical sub-manifolds 199—201
Morse theory, via quantum mechanics 207—215
Multi-index notation 32
Neumann problem 128
Normal bundle 66 94 199
Nullity 193
Obstruction theory 21—23 26
Operator product expansion 301—310 314—315
Operator products 181
Orbifold 152 156
Parabolic equation 31 33—34
Parallel transport 216—218
Parametrix 55
Partition function 218 260—268 271 275
Partition function, and anomalies 271—275 278
Partition function, and axiomatic conformal field theory 318—321
Partition function, and Donaldson invariants 337
Partition function, and the Ising model 311 313
Partition function, for strings 260—268
Partition function, for the Chern-Simons action 343—351 357
Partition of unity 48 61
Path connected 11 14 218
Path ordering 343—344
Perfect Morse function 195
Period matrix 143—144
Peter — Weyl theorem 190
Pfaffian 86
Phase space 350
Phase transition 301
Picard group 146
Piecewise-linear manifold see PL manifold
PL manifold 2 20—22
Poincar conjecture 24 192
Poincar duality 23 144 238 337
Poincar polynomial 199 323
Poincar polynomial, upper-half-plane 151
Pointed space 5—6 9
Polyakov string formulation 259
Polygonal knot 340
Pontrjagin class 16 84—85 98 100—101 116 271
Positive line bundle 163—164 (see also Vanishing theorems)
Prasad-Sommerfield monopole 243 252—253
Primary field 302—317
Primary field, and knots 355—356
Principal bundle 15 33 175 219 281
Product metric 135
Projective connection 320
Projective limit 19
Projective representation 185—186
Pseudo-differential operators 41—44 89 91 94 131
Pseudo-differential operators, and Sobolev spaces 47—55
Pseudo-differential operators, on odd dimensional manifolds 99
Pseudo-locality 47
Quadratic differential 161—162
Quantised mass 227
Quaternionic projective space 323
Rank of a vector bundle 15 36 38 42—43 65 70—74 79—87 100 105 116 138—139 145—146 187 199 203 239 248 276
Rank of a vector bundle, and the stable range 72 74
Rank of a vector bundle, and virtual dimension 68—69
Rarita — Schwinger operator 289
Rational cohomology 81 98 121 123
Rational conformal field theory 313
Rational function 253
Real vector bundle see under Vector bundle
Reduced join 6
Reduced product 6
Renormalisation group 301
Representations 185—191
Representations, and Wilson lines 343
Representations, of the fundamental group 330
Representations, of the Kac-Moody algebra 187—188
Representations, of the Virasoro algebra 185—187 309—310
Riemann surface 1 10 133—134 139—144 147 148—169 197 257—268 302 316—322 350 358
Riemann surface, and Chern-Simons theory 350 358
Riemann surface, and conformal field theory 302 316—322 350 358
Riemann surface, and divisors 139—144
Riemann surface, and Khler manifolds 147
Riemann surface, and moduli space 152—165
Riemann surface, and Morse theory 197
Riemann surface, and strings 259—268
Riemann surface, and Teichmller space 148—151
Riemann surface, and the operator 133—134
Riemann surface, and the Weierstrass gap theorem 166—169
Riemann surface, Yang-Mills theory on 257—258
Riemann uniformisation 150 152
Riemann — Roch theorem 98 108 168
Rigid rotation 183
Root space 190
Roots 190 290
|
|
|
Ðåêëàìà |
|
|
|