Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Eisenhart L.P. — Riemannian geometry
Eisenhart L.P. — Riemannian geometry



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Riemannian geometry

Автор: Eisenhart L.P.

Язык: en

Рубрика: Математика/Геометрия и топология/Дифференциальная геометрия/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: second edition

Год издания: 1949

Количество страниц: 306

Добавлена в каталог: 10.11.2004

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Hypersurface, with indeterminate lines of curvature      179—183 185 218 249
Hypersurfaces      see “N-tuply orthogonal systems”
Hypersurfaces, angle between      41
Hypersurfaces, applicable      200 201 212
Hypersurfaces, geodesically parallel      57 158 249
Hypersurfaces, orthogonal      42
Identities of Ricci      30
Identity of Bianchi      82
Indeterminate lines of curvature      179—183 185 218 249
Infinitesimal motion      234 235 237
Infinitesimal transformation of a group      222 223
Infinitesimal transformation of a group, conformal      230—233
Infinitesimal transformation of a group, contravariant components      223
Infinitesimal transformation of a group, linearly independent      223
Infinitesimal transformation of a group, order      224
Infinitesimal transformation of a group, symbol of      222
Infinitesimal transformation of a group, which preserve geodesics      227—230
Infinitesimal translation      239 249
Inner multiplication      13 29
Intransitive group      225 233 235 236 244 249
Intrinsic, derivative      98
Intrinsic, property      84 192
Invariant      6 97 124
Invariant, covariant derivatives      27 29
Invariant, curvature of a $V_{n}$      83 157
Invariant, principal      110 124
Isometric, correspondence of spaces      84—88 184
Isometric, spaces      84
Isothermic hypersurfaces      116 241
Kasner      189 200 255
Killing      200 234 252
Killing, equations of      234 237
Kommerell      184 253
Kottler      93 254
Kowalewski      103 104 253
Kronecker delta      2
lame      116 252
Length, element of      34 35
Length, of a curve      36 37
Levi-Civita      5 13 21 30 31 64 65 69 74 79 83 92 97 100 107 116 117 124 125 127 131 136 138 241 252—254 256
Levy      33 59 94 140 141 218 256
Lie      221 222 224 252
Line, asymptotic      see “Asymptotic”
Lines of curvature, indeterminate      179—183 185 218 249
Lines of curvature, of a $V_{n}$ in a $V_{m}$      168
Lines of curvature, of a $V_{n}$ in an $S_{n+p}$      193 198
Lines of curvature, of a hypersurface      153—159 199 213 219
Lipschitz      177 178 252
M      169
Matrices      101—103
Mean curvature normal      169 170 178 185
Mean curvature, of a $V_{n}$ for a direction      113
Mean curvature, of a hypersurface      168
Mean curvature, of a sub-space      168 178
Metric of a space      34 35
Meusnier's theorem, generalization of      152
Minimal, curve      37
Minimal, geodesic      51 210
Minimal, surface      177 184
Minimal, variety      177—179 184 186
Motion      see “Group of motions”
Motion, in a space      87 88
Motion, infinitesimal      234 235 237 239 249
Motion, of a space of constant curvature into itself      204 207 238
Motion, of an $S_{n}$ into itself      192
Motion, paths of      235 239 240 241 249
Murnaghan      102 107 256
N-tuply orthogonal systems of hypersurfaces      43 44 117—124 138 155 158 220
Normal, congruences      see “Congruences”
Normal, coordinates      55
Normal, curvature of a curve in a subspace      150—154 158 165 193
Normal, mean curvature      169 170 178 185
Normal, null      41
Normal, principal, to a curve      61 107
Normal, to a $V_{n}$ in a $V_{m}$      47 140 143—146 192
Normal, to a hypersurface      41 158
Null vector      36 38 41 111 112
Order, of a tensor      9 10
Order, of an infinitesimal transformation      224
Orthogonal ennuples      40
Orthogonal ennuples, canonical      125—128 139 140 154 241
Orthogonal ennuples, determination of tensors      97
Orthogonal ennuples, number of      40
Orthogonal ennuples, of normal congruences      117—119 128 140
Orthogonal ennuples, of Schmidt      103 104
Orthogonal systems of hypersurfaces      see “N-tuply orthogonal etc.”
Osculating, geodesic surface of a curve      62
Osculating, geodesic variety      167 176 185 186
Outer product      12 29
Parallel displacement of a vector      65—67 79 93 184
Parallel vectors, fields of      67—72 142 185 239
Parallelism of vectors      64
Parallelism of vectors, in a sub-space      74 75 167
Parallelism of vectors, in a totally geodesic sub-space      184
Parallelism of vectors, normal to a hypersurface      158
Parallelism of vectors, tangent to a $V_{2}$      79 175
Parallelism of vectors, tangent to a sphere      76
Paths of a continuous group      222 231 235 239 240 241 249
Peres      65 79 93 254
Point      1
Point, umbilical      179 185
Poisson operator      70
Principal, congruences      110 118
Principal, directions      107—114 124 181 199 219
Principal, invariants      110 124
Principal, normal to a curve      61 107
Principal, radii of normal curvature      153 158 193
Projective, curvature tensor      135
Projective, plane space      135
Quadratic differential form      22
Quadratic differential form, equivalence      23—26 86—88
Quadratic differential form, fundamental      34
Quadratic differential form, Liouville form      60
Quadratic differential form, of constant curvature      25 85 93 206 218 219
Quadratic differential form, positive definite      23
Quadratic differential form, second and third of a hypersurface      150 155 156 219
Quadratic differential form, signature      23
Quadratic differential form, transformation      24 86
R      22 83
Radius of, curvature of a curve      61 107
Radius of, normal curvature      150—154 158 165 193
Regular space      250
Relative, curvature      see “Curvature of a curve”
Relative, tensor      31
Relativity      34 37 51 83 113 140 188 189
Ricci      5 13 21 22 30 31 97 107 113 116 117 124 125 127 139 140 159 163 172 174 181 183 184 188 190 241 250—253 256
Ricci, identities      30
Ricci, principal directions      114 181 199 219
Ricci, tensor      22 32 47 92 93 113 114 135 200
Riemann      34 53 80 86 252
Riemann, symbols      20 21
Riemann, tensor      20 25 30 32 33 44 47 81—84 93 159 162 172 180 187 211 212 237
Riemannian, coordinates      53—55
Riemannian, curvature      79—81 113 159
Riemannian, form of the linear element      86
Riemannian, geometry      35
Riemannian, metric      35
Riemannian, space      35
Rotation, coefficients of      97—100
Rotation, in an $S_{n}$      192
Sbrana      201 253
scalar      6
Scalar, curvature of a space      83 157
Schmidt      104 253
Schouten      16 22 65 92 93 124 125 134 182 185 199 200 254 255
schur      83 252
Schwarzschild      93 188 254
Severi      64 254
Signature of a quadratic differential form      23
Six-vector      12
Sommerville      254
Space      see “Einstein space”
Space of constant Riemannian curvature      83
Space of constant Riemannian curvature, applicable hypersurfaces      212
Space of constant Riemannian curvature, fundamental form      25 85 93 206 218 219
Space of constant Riemannian curvature, geodesic correspondence      134
Space of constant Riemannian curvature, geodesics      134 139 207—210 213 219 230
Space of constant Riemannian curvature, hypersurface      157 159 212 213 218—220
Space of constant Riemannian curvature, infinitesimal transformations      230 232
Space of constant Riemannian curvature, isometric correspondence      84
Space of constant Riemannian curvature, linear first integrals of the equations of geodesics      239
Space of constant Riemannian curvature, motions      86—88 204 207 238
Space of constant Riemannian curvature, n-tuply orthogonal systems      220
Space of constant Riemannian curvature, spaces conformal to      91 219
Space of constant Riemannian curvature, sub-spaces      212
Space, flat      see “Flat and $S_{n}$
Space, homogeneous      114
Space, metric      34
Space, n-dimensional      1
Space, projective plane      135
Space, regular      250
Space, Riemannian      35
Space-time continuum of a perfect fluid      140
Spaces, applicable      75 84 200 201 212
Spaces, conformal      89
Spaces, conformal to an $S_{n}$      91—93 121—124 182 214—218
Spaces, conformal to an Einstein space      93—95
Spaces, tangent      75
Spaces, with corresponding geodesics      131—139 141
Staeckel      130 140 252
Struik      92 93 134 181 185 186 188 199 200 249 254 255
Sub-group of stability      225
Surface, geodesic      62 79 81
Surface, minimal      177 184
Surface, of translation      175 184
Synge      65 255
Tangent, sub-spaces      75
Tangent, to a curve      6
Tensor      see “Riemann tensor”
Tensor density      31
Tensor,      see “Ricci tensor”
Tensor, associate      16
Tensor, conformal curvature      91
Tensor, conjugate      15
Tensor, contraction      13
Tensor, contravariant      9 10
Tensor, covariant      9 10
Tensor, divergence      32
Tensor, fundamental      35
Tensor, mixed      9 10
Tensor, order      9 10
Tensor, rank      16
Tensor, relative      31
Tensor, satisfying equations (8.10) and (8.11)      32 48
Tensor, skew-symmetric      11
Tensor, symmetric      11
Tensor, whose first covariant derivative is zero      28 29 107 124 141 142
Tensor, zero      11
Tensors, addition, subtraction, multiplication of      12
Tensors, composition      13
Tensors, inner product      13 29
Tensors, outer product      12 29
Tensors, quotient law      14
Thomas, J.M.      94 141 256
Thomas, T.Y.      69 141 255 256
Totally geodesic sub-space      183—186 249
Transformations of coordinates      1 23—25 55 141
Transformations of coordinates, conformal      230—233
Transformations of coordinates, linear      8 55
Transformations of coordinates, linear fractional      141
Transformations of coordinates, of a group      221 223
Transitive group      225 236 247 249—251
Translation      72 192 239 241 249
Translation, surface of      175 184
Umbilical point      179 185
Veblen      69 133 141 255 256
Vector, associate curvature      73 106 164
Vector, associate direction      73—78 105 157 167
Vector, contravariant      4 5 10 39
Vector, covariant      7 10 39
Vector, divergence      32 47
Vector, magnitude      35
Vector, normal curvature      165
Vector, null      36 38 41 111 112
Vector, parallel displacement      65—67 79 93 184
Vector, relative curvature      151 165
Vector, unit      36 40
Vector-field      5 36;
Vectors      see “Orthogonal ennuple”
Vectors, angle of      37 38
Vectors, n mutually orthogonal      40
Vectors, orthogonality      38
Vectors, parallelism      see “Parallelism and Parallel vectors”
Verjuengung      13
Volume, element of      177 179
Voss      150 154 163 166 252
Weierstrass, coordinates of      204—210
Weight of a relative tensor      31
Weyl      65 91 92 133 135 254
Wilson      1 254
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте