Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Bitsadze A.V. — Equations of mathematical physics
Bitsadze A.V. — Equations of mathematical physics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Equations of mathematical physics

Автор: Bitsadze A.V.

Аннотация:

The present book consists of an introduction and six chapters. The introduction discusses basic notions and definitions of the traditional course of mathematical physics and also mathematical models of some phenomena in physics and engineering.
Chapters 1 and 2 are devoted to elliptic partial differential equations. Here much emphasis is placed on the Cauchy-Riemann system of partial differential equations, that is on fundamentals of the theory of analytic functions, which facilitates the understanding of the role played in mathematical physics by the theory of functions of a complex variable.
In Chapters 3 and 4 the structural properties of the solutions of hyperbolic and parabolic partial differential equations are studied and much attention is paidj to basic problems of the theory of wave equation and heat conduction equation.
In Chapter 5 some elements of the theory of linear integral equations are given. A separate section of this chapter is devoted to singular integral equations which are frequently used in applications.
Chapter 6 is devoted to basic practical methods for the solution of partial differential equations. This chapter contains a number of typical examples demonstrating the essence of the Fourier method of separation of variables, the method of integral transformations, tho fi è He-difference method, the method of asymptotic expansions and also the variational methods.
To study the book it is sufficient for the reader to be familiar with an ordinary classical course on mathematical analysis studied in colleges. Since such a course usually does not involve functional analysis, the embedding theorems for function spaces are not included in the present book.
A.V. Bitsadze


Язык: en

Рубрика: Математика/Математическая Физика/Учебники/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1980

Количество страниц: 318

Добавлена в каталог: 23.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Monogenic function of a complex variable      99
Morera, G.      127
Morera’s theorem      127
Muskhelishvili, N.I.      237
Neumann, K.G.      83 91 271
Neumann’s function (or Bessel’s function of the second kind)      271
Neumann’s problem (or second boundary-value problem)      83 85
Newton — Leibniz formula      124
Newton, I.      124
Non-homogeneous linear partial differential equation      14
Non-singular (or non-degenerate) affine transformation      15
Non-singular (or non-degenerate) affine transformation, invariants of      16
Norm      254
Normal form of partial differential equations in two independent variables      20ff
Operational calculus      275
Orthonormal system of functions      254
Oscillation of a circular membrane      257ff
Oscillation of a membrane      251ff
Oscillation of a membrane, small      40
Oscillation of a string      246ff
Ostrogradsky, M.V.      31
Parabolic degeneration      18
Parallel translation      173
Partial differential equation      13
Partial differential equation, domain of ellipticity of      21
Partial differential equation, domain of hyperbolicity of      21
Partial differential equation, elliptic      16 18
Partial differential equation, elliptic, uniformly      16
Partial differential equation, hyperbolic      16 18
Partial differential equation, mixed      17
Partial differential equation, order of      13
Partial differential equation, parabolic      16
Partial differential equation, solution of      13
Partial differential equation, solution of, existence of      33
Partial differential equation, solution of, fundamental (or elementary)      14 27 33
Partial differential equation, solution of, regular      14
Partial differential equation, solution of, stability of      33
Partial differential equation, solution of, uniqueness of      33
Partial differential equation, ultrahyperbolic      16
Partial differential operator      13
Partial differential operator, linear      14
Partial differential operator, uniformly elliptic      87
Piecewise analytic function      157
Piecewise analyticity of Cauchy-type integral      157
Plemelj, J.      156
Poincare problem      91
Poincare, J.H.      91
Poisson, S.D.      58 69 179
Poisson’s equation      69
Poisson’s formula      58
Poisson’s formula for solution of Cauchy problem for wave equation involving two spatial variables      179
Poisson’s formula for solution of Dirichlet problem in a ball      57ff
Poisson’s formula for solution of Dirichlet problem in a_circle      59
Poisson’s formula for solution of Dirichlet problem in half-space      62
Pole of an analytic function      138
Pole of an analytic function, order of      138
Polycylinder      163
Potential function for a double layer of distribution of dipoles on a surface (or a double-layer potential)      74ff
Potential function for a surface distribution of mass (or a single-layer potential)      81ff
Potential function for a volume distribution of mass (or a volume potential)      65ff
Potential of a field      139
Power series      102ff
Power series, multiple (in several variables)      166ff
Quadratic form      15
Quadratic form, canonical (or standard) form of      15
Quadratic form, index of      16
Quadratic form, negative definite      16
Quadratic form, positive definite      16
Quadratic form, principal minors of the matrix of      17
Quadratic form, rank of      16
Quadratic form, signature of      16
Quadratic form, symmetric      17
Quasi-linear partial differential equation      14
Radius of convergence      103
Reconstructing an analytic function from boundary values of its real part      145
Regular solution      13
Removable singular point      138
Residue of an analytic function      141
Residue of an analytic function at a polo      142
Retarded (or delayed) potential      184
Riemann — Schwarz symmetry principle (or reflection principle)      148
Riemann, G.F.      40 97 113 148 165 194
Riemann’s conformal mapping theorem      108
Riemann’s function      194
Riemann’s surface      113
Ritz method      308
Ritz, W.      308
Saddle-point method      301
Schwarz, H.A.      145 148 160
Schwarz’ formula      145 160
Second boundary-value problem (or Neumann’s problem)      83 85
Self-adjoint operator      86
Singular integral equation      236
Sokhotsky — Weierstrass theorem      139
Sokhotsky, Yu.V.      139 156
Soknotsky — Plemelj formulas      156
Solid spherical harmonics      262
Special functions      261
Specific heat      43
Spectrum      224
Spectrum of an integral equation with symmetric kernel      225
Speed of displacement of a particle of a membrane      41
Speed of sound      41
Sturm — Liouville problem      247
Sturm, J.C.F.      247
Sylvester theorem      17
Sylvester, J.J.      17
System of functions, complete      256
System of functions, linearly independent      254
System of functions, orthogonal      254
System of functions, orthonormal      254
Tautochrone problem      45 228
Taylor, B.      132 133 169
Taylor’s series (expansion)      133
Taylor’s Theorem      132
Taylor’s theorem for analytic functions of several variables      169
Theorem on conformal mapping of domains      108
Theorem on one-to-one correspondence      109
Theorem, Riemann’s      108
Uniformly elliptic partial differential equation      87
Uniqueness theorem for analytic functions      133
Uniqueness theorem for harmonic functions      49
Variational methods      303ff
Variational problem, first      303
Variational problem, second      305
Volterra, V.      37 211 225 226
Volterra’s integral equation of the first kind      226
Volterra’s integral equation of the second kind      37 211
Volterra’s integral equation of the second kind with multiple integral      225
Watson, G.N.      296
Watson’s lemma      296
Watson’s method for asymptotic expansion      296
Wave equation      29
Wave equation with three spatial variables      176
Wave equation with two spatial variables      178
Wave equation, non-homogeneous      183ff
Weierstrass, K.T.W.      129 131 139
Weierstrass’ theorems      129 131
Well-posed (or correctly set) problem      31 186ff
Zero of a function      134
Zero of a function of order n (or re-fold)      134
Zero of a function, multiple      134
Zero of a function, simple      134
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте