Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Arnold V.I., Khesin B.A. — Topological methods in hydrodynamics
Arnold V.I., Khesin B.A. — Topological methods in hydrodynamics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Topological methods in hydrodynamics

Авторы: Arnold V.I., Khesin B.A.

Аннотация:

Topological hydrodynamics is a young branch of mathematics studying topological features of flows with complicated trajectories, as well as their applications to fluid motions. It is situated at the crossroad of hyrdodynamical stability theory, Riemannian and symplectic geometry, magnetohydrodynamics, theory of Lie algebras and Lie groups, knot theory, and dynamical systems. Applications of this approach include topological classification of steady fluid flows, descriptions of the Korteweg-de Vries equation as a geodesic flow, and results on Riemannian geometry of diffeomorphism groups, explaining, in particular, why longterm dynamical weather forecasts are not reliable. Topological Methods in Hydrodynamics is the first monograph to treat topological, group-theoretic, and geometric problems of ideal hydrodynamics and magnetohydrodynamics for a unified point of view. The necessary preliminary notions both in hydrodynamics and pure mathematics are described with plenty of examples and figures. The book is accessible to graduate students as well as to both pure and applied mathematicians working in the fields of hydrodynamics, Lie groups, dynamical systems and differential geometry.


Язык: en

Рубрика: Математика/Математическая Физика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1998

Количество страниц: 391

Добавлена в каталог: 23.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Liouville theorem      308
Lobachevsky plane      197 293—294
Lobachevsky plane, absolute      293
Lobachevsky plane, geodesic flow      293
Local invariants      47
Local invariants, densities      48
Locally flat (or Euclidean) manifold      216
Loop group      334
Loop group, Lie algebra      334
Lorentz force      50 120
Lyapunov, exponent      267
Lyapunov, stable point      84
Magnetic diffusivity      259
Magnetic diffusivity, Reynolds number      259
Magnetic extension      50—52
Magnetic extension, chain equation      333
Magnetohydrodynamics (MHD) equations      49 120
Magri bracket      313
Manakov method      309
Marsden — Weinstein symplectic structure      326—327
Massey product      175
Maurer — Cartan formula      315
Maximum principle      283
Metrics, comparison of      226 228
Metrics, Hofer's      252
Metrics, left-invariant      14 19 196
Metrics, right-invariant      19
MHD equations      49 120
Minimal element      83
Minimizer      76 78—80
Moebius transformation      163
Momentum      15—16 50
Monge — Ampere equation      223
Morse function      114
Morse index      114
Morse index, type of orbit      114
Moser's lemma      136
Moyal product      62
Multiflow      237
Multilinking number      171
Navier — Stokes equation      63
Neumann problem      136
Newlander — Nirenberg theorem      330
Nonlinear Schrodinger equation      332
Null-homologous fields      123 125
Orbit, adjoint      8 81
Orbit, coadjoint      11 81
Orbit, elliptic      133
Orbit, hyperbolic      134
Over-crossing number      155
Pairing of dual spaces      33—34
Parallel translation      198—199 198(fig)
Perfect eddy      215
Poincare duality      142
Poincare recurrence theorem      96—97
Poisson bracket, constant      311
Poisson bracket, linear (or Lie — Poisson)      27 310
Poisson bracket, of fields      5
Poisson bracket, of functions      26 28
Poisson bracket, of hydrodynamic type      323
Poisson, Lie — Poisson structure      27 310
Poisson, manifold      26
Poisson, pair      309
Poisson, structure      26
Poisson, structure, compatible      309
Polymorphism      82
Polyvector      22
Principle of least action      1 16
Pseudometric      252
Quadrics, confocal      340 342
Quadrics, confocal, nomothetic      340
Quasiclassical asymptotics      277 280
Rayleigh theorem      92
Regular point of foliation      85
Representation, adjoint      4
Representation, coadjoint      10—11
Reynolds number      64
Reynolds number, magnetic      259
Ricci curvature      200
Riemannian manifold      33
Riemannian manifold, metric on a group      15
Riemannian manifold, metric on a group, left-invariant      15 196
Right-invariant metric      19
Rigid body      1 16 63
Rigid body, in a fluid      50 323
Rigid body, with a cavity      323
Rope dynamo      286
Rotation class      36
Routh method      95
Ruelle — Takens conjecture      66
Sakharov — Zeldovich problem      134
Satellite link      155
Schrodinger equation, nonlinear      332
Schwarzian derivative      317
Second differential (or variation) of the energy      86 90 107
Second fundamental form      220
Seifert surface      156 328 328(fig)
Self-linking number      141 168
Semianalytic subset      74
Semidirect product      50 53 319
Semigroup      82
Shallow water equation      307
Shock wave      306 306(fig)
Short paths, system of      145
Shortened vortex equation      99
Sine-algebra      60 62 323
Skew gradient      25
Skew-symmetric product      25
Skew-symmetric product, form      26
Smale horseshoe      267 268(fig)
Sobolev equation      335
Sobolev equation, inequality      154
Space average      146
Squire theorem      102
Stability in linear approximation      86
Stability theorem      91
Stability theorem, second      91
Stable point      84
Stationary (or steady) flow      69
Stationary (or steady) flow, Euler equation      69—70
Stationary (or steady) flow, form      275
Strange Attractor      64—65
Stream function      9 12 43 56 210
Stretch-twist-fold mechanism      286 286(fig)
Symplectic leaf      28
Symplectic leaf, manifold      25 242
Symplectic leaf, manifold, exact      243
Symplectic leaf, structure      25
Symplectic leaf, variables      324
Symplectic leaf, variables, canonical      324
System of short paths      145
Threshold of a potential      280 280(fig)
Time average      147
Topological entropy      299—300
Tradewind current      215 215(fig) 218
Translation, left      3
Translation, of the argument      309 311
Translation, right      2
Tunneling coefficients      278
Turbulence      64—67
Twist number      178 178(fig)
Two-cocycle      304
Variational derivative      39 313
Variational derivative, problem for energy      75 78
Vassiliev invariant      183
Vector field, divergence-free      4
Vector field, divergence-free, exact      35—36 38
Vector field, Hamiltonian      25 27 248
Vector field, left-(or right-)invariant      7
Vector field, modeled on a link      132
Vector field, modeled on a link, strongly      132
Vector field, null-homologous      123 125
Vector field, of geodesic variation      201
Vector field, semiexact      36 38
Vector momentum      50
Vector-potential      125 146
Virasoro algebra      304
Virasoro algebra, coadjoint orbits      307 314
Virasoro algebra, group      214 304
Vortex      56
Vortex equation      20 56 99
Vortex equation, linearized      99
Vortex equation, shortened      99
Vortex, three-vortex problem      58
Vorticity field      14 22 46 56
Vorticity field, form      22 46
Vorticity field, function      22 46 56 111
Wandering point      269
Wave vector      101 210
Weierstrass example      230 230(fig)
Whitehead link      132(fig)
Writhing number      178 178(fig)
Zeldovich theorem      274 290
Zorn Lemma      83
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте