Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Millman R.S., Parker G.D. — Elements of Differential Geometry
Millman R.S., Parker G.D. — Elements of Differential Geometry



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Elements of Differential Geometry

Авторы: Millman R.S., Parker G.D.

Язык: en

Рубрика: Математика/Геометрия и топология/Дифференциальная геометрия/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1977

Количество страниц: 266

Добавлена в каталог: 19.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Jacobian      79 201 220
Jordan curve theorem      59
Kronecker symbol      3
Lancret's Theorem      32
Left invariant vector field      223 (5.5)
Length minimizing curves      112
Length of a curve      20 237
Length of a vector      2
Level surface      91
Level surface, orientability      181
Lie bracket      144 (9.5) 217
Lie group      209 223
Line integral      50
Line of curvature      129
Line of curvature, as an asymptotic curve      139 (8.33)
Line of curvature, of a developable surface      140 (8.53)
Line of curvature, of a surface of revolution      137 (8.5)
Line of striction      140 (8.40)
Line: as a geodesic      115 (5.4)
Line: as an asymptotic curve      138 (8.26)
Line: characterization      28 33 36 4.16) 48
Line: equation      8
Linear functional      100
Linear transformation      4
Linear transformation, eigenvalues and eigenvectors      5
Linearly dependent and independent vectors      2
Logarithmic spiral      19 (1.6) 45
M(n)      205 208
Manifold      204
Manifold, dimension      204
Manifold, product      208 (2.2)
Manifold, tangent space      213
Maximally straight curve      120
Measure of a set      167
Meridian      86 (1.2)
Metric coefficients      93
Metric space      200
Metric: induced      234 241
Metric: nondegenerate      240
Metric: Riemannian      233
Metric: topological      200
Meusnier's Theorem on umbilics      175
Minimal surface      130 137
Minimal surface, characterization      138 (8.17)
Mixed scalar product      7
Moebius band      87 (1.9)
Moebius band, as a ruled surface      139 (8.36)
Moebius band, as a surface      92 (2.5)
Moebius band, line ofs triction      140 (8.41)
Moebius band, nonorientability      87 (1.9) 181
Monge patch      78
Monge patch, $g^{kl}$      101 (3.3)
Monge patch, $g_{ij}$      94
Monge patch, $L_{ij}$      106—107
Monge patch, $\Gamma_{ij}{}^k$      106—107
Monge patch, area formula      136
Monotone      60
Moving frame      28
Moving trihedron      28
n-sphere      203 205 208 215
n-sphere, curvature      242 (8.11)
n-torus      208 (2.3)
Neighborhood      200
Non-unit speed curves      46—48
Nonhomogeneous coordinates      205
Normal plane      31 37
Normal space      103
Normal space, of a submanifold      241 (8.7)
Normal spherical image: of a curve      36 162
Normal spherical image: of a surface      131
Normal vector field: of a plane curve      52
Normal vector field: of a regular curve      26
Normal vector field: of a surface      81
Null-homotopic      182
O(N)      208 (2.5)
Open set: in a metric space      200
Open set: in a surface      123
Open set: in the plane      76
Opposite point: on an oval      69
Opposite point: on an ovaloid      194 (6.1)
Orientable surface      180
Orientation of a vector space      6
Orientation of a vector space, right handed      6
Oriented great circle      167
Orthogonal net      101 (3.4)
Orthogonal vectors      3
Orthonormal basis      3
Osculating circle      39 (4.34)
Osculating paraboloid      138 (8.29)
Osculating plane      31
Osculating plane, equation      35 (4.7)
Osculating sphere      39 (4.35)
Oval      66 71 72 5.7 5.8 5.9)
Oval, constant width      69
Oval, constant width, Barbier's Theorem      70
Oval, width      69
Ovaloid (Convex surface)      193
Parabolic point      132 138
Parallel translation      118
Parallel translation, and metrical connections      234
Parallel translation, on a manifold      229
Parallel vector field: along a curve      117 228
Parallel vector field: differential equation      117
Parallel vector field: existence and uniqueness      118
Parallel vector field: on a manifold      229
Parallelism defined by a curve      122 (6.5)
Parallelizable manifold      218 (4.6) 232
Parametric curves      84
Parametric curves, as a conjugate family of curves      139 (8.32)
Parametric curves, as asymptotic curves      138 (8.24)
Period of a closed curve      53
Perpendicular      see Orthogonal net Orthogonal
Picard's theorem      42
Planar point (Flat point)      132
Plane: $g_{ij}$      101 (3.6)
Plane: $R_i{}^l{}_{jk}$      144 (9.1)
Plane: curvature of      136 (8.1)
Plane: equation of      9
Plane: geodesic curvature in      108 (4.6)
Plane: normal      31
Plane: osculating      31
Plane: parallel vector fields in      117
Plane: rectifying      31
Plethora      246
Poincare disk      179 (2.5) 188 4.4 4.5) 242
Poincare — Brouwer Theorem      196
Polar axis      39 (4.34)
Polygon      187 (4.1) 188 191
Principal curvatures      129
Principal directions      129
Principal normal vector field      26
Product manifold      208 (2.2)
Projective n-space      200 203 1.2) 205 215
Projective plane      200 223 5.6)
Proper coordinate chart      203
Proper coordinate patch      89
Pseudo-sphere      158
Raising an index      126
Rectifying plane      31
Reflection through a point      103
Region      181
Regularity condition for surfaces      77
Reparametrization: by arc length      21
Reparametrization: of a curve      17
Reparametrization: of a curve segment      23 (2.7)
Reparametrization: of a surface      79
Riemann — Christoffel curvature tensor: Riemannian connection      232 236
Riemann — Christoffel curvature tensor: type (0, 4)      239
Riemann — Christoffel curvature tensor: type (l      3) 238
Riemannian curvature tensor      141 143
Riemannian curvature tensor, coefficients      141 242
Riemannian curvature tensor, invariant definition      145 (9.10)
Riemannian curvature tensor, symmetry properties      144 (9.2) 145
Riemannian manifold      233
Riemannian metric      233
Right handed orientation      6
Rigid motion      150
Rigidly equivalent      150
Rotation      150
Rotation index      55 58
Rotation Index Theorem      56 161
Ruled surface      139
Ruled surface, curvature      139 (8.39)
Ruled surface, line of striction      140 (8.40)
Ruled surface, noncylindrical      140
Ruled surface, singular point      139
Second fundamental form      123
Second fundamental form, coefficients      104
Second fundamental tensor of a submanifold      241 (8.7)
Self-adjoint linear transformation      127
Simply connected      185
SL(n)      201
span      2
Special orthogonal matrix      150
Speed of a curve      15
Sphere      87 (1.10) 88 108 4.10) 185 187 209 215 223
Sphere of dimension n      see n-sphere
Sphere, $g^{kl}$      96
Sphere, $g_{ij}$      94 98 101
Sphere, $R_i{}^l{}_{jk}$      144 (9.3)
Sphere, angular excess      187
Sphere, angular variation      184
Sphere, area formula      136
Sphere, as a surface      90 92
Sphere, curvature of      136 (8.1)
Sphere, Dupin indicatrix      132 138
Sphere, equation      10
Sphere, Euler characteristic      190
Sphere, g      96
Sphere, geodesies      110 115 232
Sphere, L      127 (7.1)
Sphere, normal to      102 108
Sphere, orientability      180
Sphere, parallel translation on      118—119 121
Sphere, parallel vector fields      117
Sphere, simply connected      185
Sphere, stereographic projection      87 (1.10)
Spherical image      36
Stereographic projection      87 (1.10)
String involute      71 (5.5)
Submanifold      221
surface      89
Surface of revolution      86 (1.2) 179
Surface of revolution, $g_{ij}$      101 (3.1)
Surface of revolution, $L^i{}_j$      127 (7.5)
Surface of revolution, $L_{ij}$      108 (4.2 4.3)
Surface of revolution, as a surface      92 (2.1)
Surface of revolution, axis      86 (1.2)
Surface of revolution, circle of latitude      86 (1.2)
Surface of revolution, curvature      127 (7.5) 137 159
Surface of revolution, developable      140 (8.48)
Surface of revolution, geodesies      110 115 5.6)
Surface of revolution, lines of curvature      137 (8.5)
Surface of revolution, meridian      86 (1.2)
Surface of revolution, minimal      138 (8.18)
Surface of revolution, of constant curvature      153
Surface of revolution, principal curvatures      137 (8.10)
Surface, arc length on      95
Surface, complete      112
Surface, convex      193
Surface, first fundamental form      94
Surface, Fundamental Theorem      151
Surface, metric coefficients      93
Surface, minimal      130
Surface, normal space      103
Surface, normal to      81
Surface, of constant curvature      178
Surface, of constant width      194 (6.1)
Surface, orientable      180
Surface, simple      77
Surface, tangent plane      81
Surface, tangent space      93
Tangent circular image      58
Tangent developable surface      88 (1.14) 140
Tangent developable surface, $g_{ij}$      140 (8.47)
Tangent developable surface, as a developable surface      141 (8.56)
Tangent developable surface, as a ruled surface      139 (8.36)
Tangent developable surface, line of striction      140 (8.41)
Tangent line to a curve      16
Tangent plane      81
Tangent space: basis      84
Tangent space: to a manifold      213
Tangent space: to a surface      93
Tangent spherical image      36
Tangent spherical image, curvature and torsion      48 (6.10)
Tangent vector field      15
Tangent vector field, invariance under reparametrization      18
Tangent vector field, of a plane curve      52
Tangent vectors: as a vector space      84 213
Tangent vectors: on a manifold      210
Tangent vectors: on a surface      83
Taylor's theorem      213
Tensor of type (1, 1)      126
Theorema egregium      143 149
Torsion: geodetic      137 (8.13)
Torsion: of a curve      26 139
Torsion: of a sphere curve      171
Torsion: radius      34
Torus      86 (1.1) 152 181 197
Torus, $R_i{}^l{}_{jk}$      144 (9.4)
Torus, as a surface      92 (2.2)
Torus, curvature of      136 (8.1)
Torus, L      127 (7.3)
Torus, not simply connected      185
Torus, orientability      180
Total angular variation      182
Total curvature of a curve      161
Total curvature of a surface      189
Total index of a vector field      196
Total torsion      170
Tractrix      158
Triple scalar product      7
Umbilic      129
Umbilic, Meusnier's Theorem      175
Unit circle      58 169
Unit disk      169
Unit normal to a surface      81
Unit speed curve      22 24 237
Vector field: along a curve      116 225
Vector field: existence      218 (4.2)
Vector field: on a manifold      216
Vector product      6
Vector space      1
Vector space, basis      2
Vector space, dimension      2
Vector space, orientation      6
Vectors: angle between      3
Vectors: components      2
Vectors: linearly dependent and independent      2
Vectors: orthogonal      3
Velocity vector      15
Vertex      41 (4.44) 66
Vertex, Four-Vertex Theorem      66
Weingarten map      125
Weingarten map, coefficients      125
Weingarten's equations      126
Whitehead's Theorem      238
Whitney embedding theorem      222
Width: of an oval      69
Width: of an ovaloid      194 (6.1)
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте