Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Isham J. — Modern Differential Geometry for Physics
Isham J. — Modern Differential Geometry for Physics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Modern Differential Geometry for Physics

Автор: Isham J.

Аннотация:

This edition of the invaluable text Modern Differential Geometry for Physicists contains an additional chapter that introduces some of the basic ideas of general topology needed in differential geometry. A number of small corrections and additions have also been made. These lecture notes are the content of an introductory course on modern, coordinate-free differential geometry which is taken by first-year theoretical physics PhD students, or by students attending the one-year MSc course "Fundamental Fields and Forces" at Imperial College. The book is concerned entirely with mathematics proper, although the emphasis and detailed topics have been chosen bearing in mind the way in which differential geometry is applied these days to modern theoretical physics. This includes not only the traditional area of general relativity but also the theory of Yang-Mills fields, nonlinear sigma models and other types of nonlinear field systems that feature in modern quantum field theory. The volume is divided into four parts: (i) introduction to general topology; (ii) introductory coordinate-free differential geometry; (iii) geometrical aspects of the theory of Lie groups and Lie group actions on manifolds; (iv) introduction to the theory of fibre bundles. In the introduction to differential geometry the author lays considerable stress on the basic ideas of "tangent space structure", which he develops from several different points of view - some geometrical, others more algebraic. This is done with awareness of the difficulty which physics graduate students often experience when being exposed for the first time to the rather abstract ideas of differential geometry.


Язык: en

Рубрика: Математика/Геометрия и топология/Дифференциальная геометрия/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: second edition

Год издания: 2001

Количество страниц: 290

Добавлена в каталог: 19.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Topology, cofinite      36 54
Topology, component of      61
Topology, connected      61
Topology, definition of      13 32 35
Topology, discrete      43 54
Topology, finer      see Topology stronger
Topology, first countable      33
Topology, Hausdorff      53
Topology, identification      50 53
Topology, indiscrete      43
Topology, induced      50
Topology, lattice structure on      52
Topology, lattice structure on open sets      40
Topology, of a metric space      13
Topology, paracompact      231 242
Topology, product      36
Topology, separation axioms      52
Topology, stronger      42
Topology, subbase of      35
Topology, subspace      50
Topology, weaker      42
Topos theory      42
Torus      67
Upper set      27 36
Vector bundle      123 248
Vector bundle, $T\mathcal{M}$ as an example of      77
Vector bundle, map between pair of      248
Vector field, $C^\infty(\mathcal M)$-module structure on set of      99
Vector field, as derivation of ring $C(\mathcal M)$      99
Vector field, commutator of pair of      102
Vector field, complete      109
Vector field, components of      100
Vector field, definition of      97
Vector field, h-related pair of      105
Vector field, horizontal lift of      262
Vector field, induced      114
Vector field, induced by one-parameter subgroup      191
Vector field, integral curve of      108
Vector field, left-invariant      158
Vector field, Lie derivative of      see Lie derivative vector
Vector field, local flow of      115
Vector field, restriction to open subset      98
Vector field, right-invariant      3 58
Vector field, vector space structure on set of      99
Vector space, topological      63 122
Vector, horizontal      256
Vector, vertical      254
Vertical subspace      268
Vertical vector      see Vector vertical
Wilson loop      266
Yang — Mills theory      16 201 207 222 224 229 231 239 256 265 271
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте