Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Weinstock R. — Calculus of variations with applications to physics & engineering
Weinstock R. — Calculus of variations with applications to physics & engineering



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Calculus of variations with applications to physics & engineering

Àâòîð: Weinstock R.

Àííîòàöèÿ:

Book basically divided into two parts. Chapters 1-4 include background material, basic theorems and isoperimetric problems. Chapters 5-12 are devoted to applications, geometrical optics, particle dynamics, the theory of elasticity, electrostatics, quantum mechanics and other topics. Exercises in each chapter.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/Àíàëèç/Ó÷åáíèêè ïî ýëåìåíòàðíîìó àíàëèçó/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1974

Êîëè÷åñòâî ñòðàíèö: 326

Äîáàâëåíà â êàòàëîã: 18.04.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Abraham, M.      294n. 316
action      85—88 268—269
Approximation of eigenvalues      see Ritz method
Area, formula for surface      10
Area, maximum, in plane      53—56
Area, minimum surface      115
Area, minimum surface of revolution      19—20 30—32
Asymptotic distribution of eigenvalues      see Eigenvalue-eigenfunction problems
Bar bending, by couples      212—217 250—251
Bar bending, “engineering theory”      251. See also Eigenvalue-eigenfunction problems; Vibrations
Basic lemma      16—17 43—44
Becker, R.      294n. 316
Bending by couples, bar      212—217 250—251
Bending by couples, plate      224—228
Bending moment      214—215 250
Bernoulli — Euler equation      251
Bernoulli, J.      19 29 67 71
Bessel functions      129—130
Bessel functions in circular-membrane problem      194
Bessel functions in circular-plate problem      259
Bibliography      319
Black-body radiation      198 271
Bliss, G.A.      vii 2n. 20n. 29n. 31n. 319
Body forces      199 205
Bohr, N.      264 275
Bolza, O.      vii 2n. 319
Born, M.      277n.
Boundary conditions, distinction between free and imposed      114—115
Boundary conditions, elastic solid, general      209—210
Boundary conditions, electrostatic potential      294—295
Boundary conditions, relaxed conditions      302—306
Boundary conditions, vibrating bar      221
Boundary conditions, vibrating membrane, elastically held edge      152
Boundary conditions, vibrating membrane, free edge      153
Boundary conditions, vibrating plate      231—236 256—257
Boundary conditions, vibrating plate, free-edge square      248—249
Boundary conditions, vibrating plate, free-edge square, corner condition      249
Brachistochrone      19 28—29
Brachistochrone, between two curves      47
Brachistochrone, curve to fixed point      41—43
Brachistochrone, optical solution      71
Brachistochrone, point, to curve      40—41
Brachistochrone, point, to vertical line      38
Capacity of condenser      297
Capacity of condenser, approximation of, from above      298—300 314—315
Capacity of condenser, approximation of, from above, cubical condenser      315
Capacity of condenser, approximation of, from above, ellipsoidal condenser      300—302 316
Capacity of condenser, characterization, maximum      304
Capacity of condenser, characterization, minimum      297
Capacity of condenser, cylindrical      309
Capacity of condenser, cylindrical, approximation of      317—318
Capacity of condenser, cylindrical, characterization, maximum      309—310 317
Capacity of condenser, cylindrical, characterization, minimum      309 310
Capacity of condenser, from below      302—306 316
Capacity of condenser, from below, cubical condenser      316—317
Capacity of condenser, from below, ellipsoidal condenser      306—308
Cavity radiation      198 271
Cavity radiation, asymptotic distribution of frequencies      198
Change of variables      see Transformation
Compatibility, equations of      204
Condenser      see Capacity of condenser
Coordinates, generalized      73
Couple      see Bending by couples
Courant, R.      viii In. 171n. 311n. 319
Davisson, C.J.      264 270
de Broglie, L.      264 270 271
Degeneracy      154. See also Eigenvalue-eigenfunction problems
Derivative of an integral      5
Determinants      8—9
Dirichlet, existence of minima of integral      310—311
Dirichlet, principle of      311
Dirichlet, problem of      296
Dynamics of particles      72—92
Eigenvalue-eigenfunction problems      99
Eigenvalue-eigenfunction problems, approximation      107—114 117—118
Eigenvalue-eigenfunction problems, asymptotic distribution      196—197
Eigenvalue-eigenfunction problems, characterization, isoperimetric      116
Eigenvalue-eigenfunction problems, characterization, minimum      102—105
Eigenvalue-eigenfunction problems, characterization, normalization      99 101
Eigenvalue-eigenfunction problems, characterization, orthogonality      101
Eigenvalue-eigenfunction problems, quantum mechanics      263
Eigenvalue-eigenfunction problems, quantum mechanics, characterization, isoperimetric      263 280
Eigenvalue-eigenfunction problems, quantum mechanics, characterization, minimum      281
Eigenvalue-eigenfunction problems, quantum mechanics, eigenvalues as energy levels      263 278
Eigenvalue-eigenfunction problems, quantum mechanics, significance of normalization      276 279.
Eigenvalue-eigenfunction problems, Sturm — Liouville      119—131
Eigenvalue-eigenfunction problems, Sturm — Liouville, asymptotic distribution      196—197
Eigenvalue-eigenfunction problems, Sturm — Liouville, characterization, isoperimetric      119
Eigenvalue-eigenfunction problems, Sturm — Liouville, maximum-minimum      196
Eigenvalue-eigenfunction problems, Sturm — Liouville, minimum      130
Eigenvalue-eigenfunction problems, Sturm — Liouville, orthogonality      130. See also Sturm — Liouville problem
Eigenvalue-eigenfunction problems, three-dimensional vibrations      197—198
Eigenvalue-eigenfunction problems, vibrating bar      221—224
Eigenvalue-eigenfunction problems, vibrating bar, clamped      244—246
Eigenvalue-eigenfunction problems, vibrating bar, explicit solution      252—255
Eigenvalue-eigenfunction problems, vibrating bar, isoperimetric characterization      223
Eigenvalue-eigenfunction problems, vibrating bar, orthogonality      223—224
Eigenvalue-eigenfunction problems, vibrating membrane      145—146 152
Eigenvalue-eigenfunction problems, vibrating membrane, approximation      188—192
Eigenvalue-eigenfunction problems, vibrating membrane, asymptotic distribution      177—188
Eigenvalue-eigenfunction problems, vibrating membrane, characterization, isoperimetric      147—148 152—153
Eigenvalue-eigenfunction problems, vibrating membrane, degeneracy      154 155 163—164 167n.
Eigenvalue-eigenfunction problems, vibrating membrane, maximum-minimum      171—173
Eigenvalue-eigenfunction problems, vibrating membrane, maximum-minimum, consequences      173—176
Eigenvalue-eigenfunction problems, vibrating membrane, minimum      164—167
Eigenvalue-eigenfunction problems, vibrating membrane, minimum, consequences      167—170
Eigenvalue-eigenfunction problems, vibrating membrane, minimum, limitations      170—171
Eigenvalue-eigenfunction problems, vibrating membrane, normalization      146 152
Eigenvalue-eigenfunction problems, vibrating membrane, orthogonality      154—157
Eigenvalue-eigenfunction problems, vibrating membrane, rectangular      161—164
Eigenvalue-eigenfunction problems, vibrating plate      236—240
Eigenvalue-eigenfunction problems, vibrating plate, approximation      240—244
Eigenvalue-eigenfunction problems, vibrating plate, characterization, isoperimetric      237—238 257
Eigenvalue-eigenfunction problems, vibrating plate, characterization, maximum-minimum      240 258
Eigenvalue-eigenfunction problems, vibrating plate, characterization, minimum      239—240 258
Eigenvalue-eigenfunction problems, vibrating plate, circular      259—260
Eigenvalue-eigenfunction problems, vibrating plate, clamped square      244—248 260
Eigenvalue-eigenfunction problems, vibrating plate, degeneracy      237
Eigenvalue-eigenfunction problems, vibrating plate, orthogonality      238—239
Eigenvalue-eigenfunction problems, vibrating string      98—100 115—116
Einstein, A.      271
Elasticity theory      199—260
Elasticity theory, approach to dynamical problems      210—211
Elasticity theory, boundary conditions, general      208—210
Elasticity theory, equations, of equilibrium and motion, general      209
Electrostatic intensity      294
Electrostatics      294—318
Electrostatics, two-dimensional problems      308—310
End-point conditions      see Boundary conditions; Undetermined end points
Energy, total      75—76. See also Kinetic energy; Potential energy
Energy, total, eigenvalues in quantum mechanics      263 278
Energy, total, eigenvalues in quantum mechanics, helium atom      286
Energy, total, eigenvalues in quantum mechanics, one-electron atom      275
Energy, total, equivalence with hamiltonian      77
Energy, total, equivalence with hamiltonian, in least-action principle      85—88
Energy, total, equivalence with hamiltonian, in reduced Hamilton — Jacobi equation      83
Equations of compatibility      204
Equilibrium      90
Equilibrium of elastic plate      260
Euler — Lagrange equations      20—23. See also Transformation
Euler — Lagrange equations, degenerate cases      25—26 134—135
Euler — Lagrange equations, first integrals      24—25 34 45 52
Euler — Lagrange equations, higher derivatives      46 61 64
Euler — Lagrange equations, in dynamics of particles      75 92
Euler — Lagrange equations, isoperimetric problems      50 95 134
Euler — Lagrange equations, several dependent variables      32—33 52 60
Euler — Lagrange equations, two or more independent variables      94 95 133 134
Euler's theorem on homogeneous functions      6
Extremizing function      23
Extremum      2 23
Extremum of double integral      93—95
Extremum of n-tuple integral      133
Extremum of triple integral      132—133
Fermat's principle      67—71
Fermat's principle in quantum mechanics      268—269
Flexural rigidity, of bar      217
Flexural rigidity, of plate      228
Force components, generalized      89—90
Fox, C.      319
Franklin, P.      3n. 319
Fundamental lemma      16—17 43—44
Generalized coordinates      73
Generalized force components      89—90
Generalized momenta      76
Generalized velocity components      74
Geodesies      18 26—27 61—63 65
Geodesies in plane      17—18 24
Geodesies on cone and cylinder      45
Geodesies on sphere      27—28 62—63
Geodesies on surface of revolution      28 45
Germer, L.H.      264 270
Goldschmidt discontinuous solution      31
Goursat, E.      3n. 319
Gradient      12
Green's theorem      12—15
Group velocity      290
Hamilton equations of motion      78
Hamilton equations of motion, transformed      79—82
Hamilton integral      74
Hamilton — Jacobi equation      82
Hamilton — Jacobi equation, in quantum mechanics      262 269 277
Hamilton — Jacobi equation, reduced      83 84
Hamilton's principle      74—75 77
Hamilton's principle, application to vibrations, of bar      218—221
Hamilton's principle, application to vibrations, of membrane      145 148—151 159
Hamilton's principle, application to vibrations, of plate      229—231
Hamilton's principle, application to vibrations, of string      96—97 105
Hamilton's principle, extended      88—90 92
Hamilton's principle, extended, application to motion, of elastic solid      205—209
Hamilton's principle, extended, application to motion, of membrane under transverse force      193
Hamilton's principle, extended, application to motion, of plate under transverse force      260
Hamilton's principle, extended, application to motion, of string under transverse force      116
Hamiltonian      76—77 79 82
Hartree model of the atom      286—290
Hedrick, E.R.      319
Helium atom      281
Helium atom, approximation of ground-state energy      281—286
Helium atom, singly ionized      275
Hermite differential equation      131
Hilbert, D.      viii 171n. 311 319
Homogeneous functions, Euler's theorem on      6
Hooke's law      203—204
Hydrogen atom      271—275
Hydrogen atom, energy levels      275
Hydrogen atom, spherically symmetric wave functions      274
Ince, E.L.      99n. 121n. 124n. 125n. 319
Indeterminacy, principle of      277
Integration by parts      5
Isoperimetric problems      48—57 65.
Isoperimetric problems, two or more independent variables      95 133—134
Jackson, D.      127n. 319
Jacobi, C.G.J.      vii. See also Hamilton-Jacobi equation
Jacobian      9—10 136 140—141 293
Kellog, O.D.      3n. 296n. 311n. 319
Kent, G.      viii
kinetic energy      73
Kinetic energy of elastic deformation      205
Kinetic energy of vibrating bar      218
Kinetic energy of vibrating membrane      143
Kinetic energy of vibrating plate      228
Kinetic energy of vibrating string      96
Kronecker delta      101
Lagrange equations of motion      75 92.
Lagrange multipliers      6 49 63.
Lagrangian      74
Laguerre polynomials      128—129 274
Laplace's equation      295 309
Laplacian      12
Laplacian, transformation of      138—142
Least action, principle of      85—88 268—269
Legendre differential equation      131
Legendre, A.M.      vii
Lemma, basic      16—17 43—44
Line integral      6 7
Linear independence      9
Love, A.E.H.      319
Maximum-minimum characterization of eigenvalues      see Eigenvalue-eigenfunction problems
Mechanics      see Dynamics of particles; Quantum mechanics
Membrane      142. See also Eigenvalue-eigenfunction problems; Vibrations
Membrane system, definition of      167
Membrane system, “narrower” relationship      168
Minimum characterization of eigenvalues      see Eigenvalue-eigenfunction problems
Moment, bending      214—215. 250
Moment, of inertia (area)      214
Momenta, generalized      76
Morse, P.M.      259n.
Newton, I.      19 74 75
Normal derivative      7—8 11—12
Normalization      99. See also Eigenvalue-eigenfunction problems
Optics, geometric      see Fermat's principle
Orthogonality      101. See also Eigenvalue-eigenfunction problems; Schmidt process of orthogonalization
Parametric representation      34—36
phase velocity      266 267 269
Phase velocity of a particle      269
Piecewise continuity      4
Piecewise differentiability      4
Planck's constant      262n. 271
Planck, M.      271
Plate bending, by couples      224—228
Plate bending, by transverse-force distribution      260. See also Eigenvalue-eigenfunction problems; Vibrations
Poisson's ratio      203—204
potential energy      72 89
Potential energy of elastic deformation      205 212
Potential energy of elastic deformation, bar bent by couples      216—217
Potential energy of elastic deformation, plate bent by couples      227—228
Potential energy of elastic deformation, vibrating bar      218
Potential energy of elastic deformation, vibrating plate      228
Potential energy of electrostatic field      295
Potential energy of helium atom      281
Potential energy of many-electron atom      287
Potential energy of one-electron atom      272
Potential energy of vibrating membrane      143—145
Potential energy of vibrating membrane, elastic binding of edge      148
Potential energy of vibrating string      96
Potential, electrostatic      294
Potential, minimum characterization      295 311—312
quantum mechanics      261—293
Quantum mechanics, comparison with classical mechanics      276—277
Quantum mechanics, reduced Hamilton — Jacobi equation in      262 269 277.
Radiation      198 271
Rayleigh — Ritz method      241ra. See Ritz method
Rayleigh, Lord, J.W.S.      247n. 249n. 319
Ritz method      241
Ritz method for helium atom      281—286
Ritz method for vibrating membrane      188—192
Ritz method for vibrating plate      240—244
Ritz method for vibrating plate, clamped square      244—248
Ritz method for vibrating string      107—114
Ritz method in electrostatics      296
Ritz method in Hartree method      286—290
Ritz, W.      241
Rod      see Bar bending
Rope, hanging      56—57 64 66
Saint — Venant's principle      211n.
Scalar product      12
Schiff, L.I.      319
Schmidt process of orthogonalization      155—157
Schroedinger equation, first derivation      262—263
Schroedinger equation, for several particles      277—280
Schroedinger equation, for single particle      263 270
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå