Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Schneider R. — Convex Bodies: The Brunn-Minkowski Theory
Schneider R. — Convex Bodies: The Brunn-Minkowski Theory



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Convex Bodies: The Brunn-Minkowski Theory

Автор: Schneider R.

Аннотация:

At the heart of this monograph is the Brunn-Minkowski theory. It can be used to great effect in studying such ideas as volume and surface area and the generalizations of these. In particular the notions of mixed volume and mixed area arise naturally and the fundamental inequalities that are satisfied by mixed volumes are considered in detail. The author presents a comprehensive introduction to convex bodies and gives full proofs for some deeper theorems which have never previously been brought together. Many hints and pointers to connections with other fields are given, and an exhaustive reference list is included.


Язык: en

Рубрика: Математика/Геометрия и топология/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1993

Количество страниц: 490

Добавлена в каталог: 16.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Martini, H.      3.5 7.3 7.4
Mase, S.      3.1
Matheron, G.      1.8 3.1 3.2 3.5 4.2 4.4 4.5 5.1 5.3 6.5
Matsumura, S.      6.4 Appendix
Mazur, S.      2.2
McKinney, R L.      1.3
McMinn, T.J.      2.3
McMullen, P.      1.2 1.7 1.8 2.1 2.4 2.5 3.2 3.4 3.5 4.2 4.5 5.1 7.1 7.3 7.4
Mean, curvature      106
Mean, width      42
Measure      183
Measure, contact      260
Measure, curvature      203
Measure, curvature, generalized      202
Measure, even      183
Measure, length      215
Measure, locally defined      206
Measure, log-concave      315
Measure, of symmetry, Minkowski      141
Measure, signed      183
Mecke, J.      3.1 4.5
Meier, Ch,      5.1 5.2 5.4
Meissner, E.      3.5 5.4 Appendix
Melzak, Z.A.      2.5
Menger, K.      1.8
Meschkowski, H.      3.1
Metric, entropy      60
Metric, projection      9
Meyer, M.      2.4 3.2 3.4 4.2 7.4
Meyer, P.      4.2
Meyer, W.      3 2
Michael, E.      1.8
Miles, R.E.      4.5
Milka, A.D.      3.2
Milman, D.      1.4
Milman, V.D.      3.3 3.5 6.1 7.4 Appendix
Minimal width      42
Minkowski addition      41
Minkowski additive function      41
Minkowski difference      133
Minkowski functional      209
Minkowski linear map      166
Minkowski map      166
Minkowski subtraction      126 133
Minkowski symmetrization      165
Minkowski's existence theorem      390
Minkowski's inequalities      317 321
Minkowski's measure of symmetry      141
Minkowski's theorem      19
Minkowski, H.      1.4 2.2 3.1 3.3 5.1 5.4 6.1 6.2 6.6 7.1 7.2 Appendix
Minkowskian integral formulae      291 300
Minoda, T.      Appendix
Miranda, C.      7.1
Mityagin, B.S.      6.1
Mixed affine surface area      424
Mixed area      321
Mixed area measure      274
Mixed body      396
Mixed brightness      422
Mixed curvature function      115
Mixed discriminant      115 383 388
Mixed moment vector      303
Mixed projection body      421
Mixed volume      272
Mixed width integral      385
Molter, U.M.      4.5
Moment vector      303
Monotypic polytope      103 153
Moore, J.D.      7.2
Motzkin, T.S.      1.2
Mueller, C.      4.4 5.4 Appendix
Mueller, H.R.      5.4
Mueller, W.      4.4
Murner, P.      3.5
Nadenik, Z.      6.2 7.1
Nadler, S.B.      1.8
Nakajima, S.      5.4 Appendix
Nearest-point map      9
Negative type      194
Netuka, I.      2.6
Neveu, J      4.5
Newman, D.J.      2.3
Neyman, A.      3.3
Nieliborc, W.      5.4
Nirenberg, L.      7.1
Nomothetic sets      xii
Normal cone      70
Normal point      116
Normal vector      xi 70 96
Normal vector, exposed      74
Normal vector, exterior      11 70
Normal vector, extreme      74 76
Normal vector, outer      11 70 96
Normal vector, outward      70
Normal vector, r-exposed      75
Normal vector, r-extreme      74
Normal vector, regular      77
Normal vector, singular      77
Normalized convex body      150
O'Brien, R.C.      3.1
Oda, T.      6.2
Ohmann, D.      4.2 6.1 6.2 6.4
Ohshio, S.      6.5
Oishi, K.      Appendix
Oliker, V.I.      7.1 7.2
Opening of set A by set B      138
Osserman, R.      6.2
Outer normal vector      11 70 96
Outer parallel body      134 197
Outward normal vector      70
Overhagcn, T.      5.3
p-quermassintegral      384
p-sum      383
Pach, J.      7 1
Pair of constant width      139
Pajor, A.      6.1 7.4
Panina, G. Yu,      3.5
Panov, A.A.      6.8
Papaderou-Vogiatzaki, I.      4.5
Papadopoulou, S.      2.1
Parallel body      134
Parallel body, relative      134
Paya, R.      3.2
Perfect face      73
Perles, M.A.      3.4 4.4
Petermann, E.      6.2
Petty projection inequality      387 416
Petty, C.M.      3.5 7.4 Appendix
Phelps, R.R.      1.4 3.3
Phillips, R.S.      1.7
Pisier, G.      6.1 7.4
Pogorelov, A, V.      4.3 7.1 7.2
Point, affinely independent      x
Point, Euler      116
Point, exposed      19 65
Point, extreme      18 65
Point, internal      7
Point, normal      116
Point, r-exposed      65
Point, r-singular      73
Point, regular      73
Point, Santalo      419
Point, singular      73
Point, smooth      73 153
Polar, body      33
Polar, projection body      414
Polytope      3 49
Polytope, locally similar      101
Polytope, monotypic      103 153
Polytope, simple      99
Polytope, simplicial      99
Polytope, space-filling      192
Polytope, strongly combinatorially equivalent      101
Polytope, strongly isomorphic      101
Pontrjagin, L.S.      3.3
Porous set      124
Positive basis      17
Positive combination      2
Positive definite function      194
Positive hull      2
Positive reach      212
Positively homogeneous function      26
Positively homothetic set      xii
Positsel'skii, E.D.      3.4
Pranger, W.      1.4
Prekopa, A.      6.1
Principal curvatures      105
Principal kinematic formula      229
Principal radii of curvature      108
Projection body      296 414
Projection cone      70
Prolongation      138
Proper face      62
Proper function      21
Proper rigid motion      xii
Proper separation      12
Przeslawski, K      1.8 3.4
Quermassintegral      209
Quermassintegral, affine      387
Quermassintegral, dual      386
Quermassintegral, dual affine      387
Quermassintegral, harmonic      386
Quermassintegral, p-      384
Quermassvector      304
Quinn, J.      1.8
r-exposed normal vector      75
r-exposed point      65
r-exposed support plane      75
r-extreme normal vector      74
r-extreme point      65
r-extreme support plane      74
r-singular point      73
r-skeleton      65
r-skeleton, exposed      65
Rademacher, H.      1.7
Radial function      44 416
Radial map      79
Radius of curvature      104
Radius of curvature, Jessen      117
Radius of curvature, lower      104
Radius of curvature, principal      108
Radius of curvature, tangential      119
Radius of curvature, upper      104
Radon's theorem      4
Radon, J.      1.1 3.3
Radstrom, H.      1.8
Random closed set      255
Ratschek, H.      1.8
Rauch, J      2.5 3.2
Ray      xi
Ray, extreme      18
Reay, J.R.      1.1 1.3
Recession cone      17
Reducible convex body      141 156
Regular normal vector      77
Regular point      73
Regular support plane      77
Reidemeister, K.      2.2 3.5
Reisner, S.      7.4
Reiter, H.B.      2.1
Relative boundary      xi
Relative indecomposability      157
Relative inradius      135
Relative interior      xi
Relative parallel body      134
Relatively indecomposable set      157
Renyi, A.      6.5
Resetnjak, Ju, G.      1.5 7.2 Appendix
Residual set      119
Reuleaux, F.      3.5
Reverse second fundamental form      107
Reverse spherical image      78
Reverse spherical image map      78 107
Reverse Weingarten map      107
Rham, G. de      2.6
Ricker, W      3.3
Rickert, N.W.      3.5
Riesz, F.      1.7
Rigid motion      xii
Rigid motion invariant function      42
Rigid motion, improper      xii
Rigid motion, proper      xi
Rivin, I.      7.4
Roberts, A.W.      1.5
Rockafellar, R.T.      1.1 1.4—1.7
Rogers, C.A.      1.8 2.1 2.3 3.2 7.1 7.3 7.4
Rolling theorem      155
Rota, G.-C      3 4
Rotation      xii
Rotation mean      161
Rother, W.      4.5
Rotor      190 196
Rov, N.M.      1.4
Roy, A.K.      1.4 3.1 5.4
Roy, S.N.      5.4
Rubinov, A.M.      7.1
Sacksteder, R.      2.5
Saint Pierre, J.      1 8 3.3 3.4
Saint Raymond, J.      7.4
Saks, M.      6.3
Salinetti, G.      1.8
Sallee, G.T.      2.5 3.1 3.2 3.4 4.4
Sandgren, L.      1.7
Sangwine-Yager, J.R.      6.2 6.5 6.6
Sanlalo, L.A.      4.2 4.5 5.3 6.2 6.4 7.4
Santalo point      419
Sas, E.      Appendix
SaSkin, Ju, A.      1.4
Sceley, R.T.      2.5 Appendix
Schaal, H.      3.5
Schmidt, E.      6.1
Schmidt, K.D.      1.8
Schmitt, K.A.      3.1 3.4
Schneider, R.      1.7 1.8 2.1 2.3—2.6 3.1—3.5 4.2—4.6 5.1—5.4 6.2 6.3 6.5—6.8 7.1—7.4 Appendix
Schori, R.M.      1.8
Schrader, R.      4.4
Schroder, G.      1.8
Schurger, K.      3.1
Schutt, C.      7.4
Schwarz, T.      2.6
Secger, A.      1.5
Second category      119
Second fundamental form      105
Semiaxis function      46
Sen'kin, E.P.      4.3
Separation      12
Separation, proper      12
Serra, J.      3.1
Set, convex      1
Set, convex, continuous      46
Set, critical      141
Set, H-convex      350
Set, homothetic      xii
Set, indecomposable convex      157
Set, indecomposable non-convex      157
Set, line-free      17
Set, local parallel      198
Set, porous      124
Set, positively homothetic      xii
Set, random closed      255
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте