Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Morse P., Feshbach H. — Methods of Theoretical Physics (part 1)
Morse P., Feshbach H. — Methods of Theoretical Physics (part 1)



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Methods of Theoretical Physics (part 1)

Àâòîðû: Morse P., Feshbach H.

ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1953

Êîëè÷åñòâî ñòðàíèö: 997

Äîáàâëåíà â êàòàëîã: 16.04.2007

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Field momentum density for diffusion equation      344
Field momentum density for Dirac equation      336 346
Field momentum density for elastic media      323 325 345
Field momentum density for electromagnetic field      330 346
Field momentum density for fluid      312 343
Field momentum density for Klein — Gordon equation      317 345
Field momentum density for Schroedinger equation      315 344
Field momentum density for string      305 343
Field momentum density in tables      341—345
Fields      1
Fields dyadic      64 (see also “Dyadics”)
Fields electric      201
Fields electromagnetic      see “Electromagnetic field”
Fields general properties      319—321
Fields irrotational      18
Fields magnetic      202 1791 1798 1803
Fields scalar      4—8 301—318 1175
Fields singularities of      20
Fields variational principles for      301—337
Fields vector      8—21 318—337 1762
Fields vorticity of      41
Fission and diffusion      1595—1604
Flexible string      see “String”
Floquet’s theorem      557
Flow function      13 1180 1220
Flow function and complex variables      356
Flow lines of      12
Flow of energy      see “Field intensity”
Flow of liquid through porous solid      172
Flow of mass      172
Flow resistance      1198 (see also “Compressible flow”; “Fluid flow”; “Heat flow”; “Irrotational flow”; “Viscosity”; “Viscous flow”)
Fluid flow      151—171 307—313
Fluid flow and analytic functions      1219 1227
Fluid flow Bernouilli’s equation      161
Fluid flow boundary conditions      156
Fluid flow continuity equation for      153
Fluid flow forces due to      1221
Fluid flow in ducts      1257 1261
Fluid flow incompressible      see “Incompressible fluid flow”
Fluid flow irrotational      153
Fluid flow kinetic energy of      307
Fluid flow Laplace equation for      155 307
Fluid flow Mach number      166
Fluid flow past cylinders elliptic      1199
Fluid flow past cylinders two      1212
Fluid flow past cylinders, circular      1185
Fluid flow past sphere      1266
Fluid flow past spheroid, oblate      1293
Fluid flow potential energy of      308
Fluid flow shock waves and      168
Fluid flow source and sink for      153
Fluid flow subsonic and supersonic      165
Fluid flow through orifice, circular      1294
Fluid flow through slit      1195 1197 1795
Fluid flow variational principle for      307
Fluid flow velocity potential for      307
Fluid flow, viscous      160 1185
Fluid flow, viscous equation for      160
Fluid flow, viscous stresses in      158
Fluid flow, vorticity      153 1185
Flux, particle      1614
Force, on charge and currents      205
Force, on charge and currents due to fluid flow      1221
Force, on charge and currents on flexible string      120—122
Forced motion, of elastically braced string      140
Forced motion, of elastically braced string and Fourier transform      131 1333
Forced motion, of torsional waves in rod      1844
Forced motion, of vibrating string      129
Form factor      1691 1742
Forward scattering, distribution function for      1610 1748 1750
Forward scattering, distribution function for and total cross section      1069 1546
Four-vector potentials      209 326
Four-vectors      see “Vectors”
Fourier integral      453
Fourier integral and quantum mechanics      241
Fourier integral and transients      131 1333
Fourier integral theorem      453 458
Fourier integral theorem and continuous eigenvalue distribution      763
Fourier inversion formula      453
Fourier series, completeness of      571
Fourier series, completeness of and eigenfunction series      743 745
Fourier series, completeness of and Fourier transforms      454
Fourier series, completeness of and Green’s functions      710
Fourier series, completeness of and Mathieu’s functions      564 573
Fourier series, completeness of and vibrating string      135
Fourier series, completeness of Gibbs’ phenomenon for      745
Fourier transforms      452—471
Fourier transforms analytic properties      459
Fourier transforms and cosine transforms      455
Fourier transforms and forced vibrations      1333
Fourier transforms and Fourier series      454
Fourier transforms and Green’s functions      1361
Fourier transforms and integral equations      942 960—992
Fourier transforms and integral theorem, Fourier      453 458
Fourier transforms and Laplace transform      467
Fourier transforms and Mellin transform      469
Fourier transforms and Parseval’s theorem      456
Fourier transforms and Poisson sum formula      466
Fourier transforms and sine transform      455
Fourier transforms asymptotic behavior      462
Fourier transforms faltung theorem for      464 483 964 972
Fourier transforms tabulation      483
Fourier — Bessel integral      766
Fractions, continued      557
Fraunhofer diffraction      887
Fredholm equation, of first kind      904 925—949 992 994
Fredholm equation, of first kind and differential equations      945
Fredholm equation, of first kind, and generating functions      935
Fredholm equation, of first kind, and Green’s functions      939
Fredholm equation, of first kind, and moment problem      947
Fredholm equation, of first kind, and transforms      942
Fredholm equation, of first kind, series solution of      926
Fredholm equation, of first kind, Wiener — Hopf solution of      990
Fredholm equation, of second kind      949—960 992 995
Fredholm equation, of second kind and Fourier transforms      960—992
Fredholm equation, of second kind and generating functions      954
Fredholm equation, of second kind and Green’s functions      952
Fredholm equation, of second kind and Hankel transforms      962
Fredholm equation, of second kind classification of      951
Fredholm equation, of second kind homogeneous      966
Fredholm equation, of second kind inhomogeneous      959 969 972 990
Fredholm perturbation method      1018—1026
Fredholm perturbation method applied to Mathieu’s equation      1025
Fredholm perturbation method modified formulas for      1033
Fredholm perturbation method with nonorthogonal functions      1036
Fredholm series for scattering      1078
Fredholm series for scattering for penetration throughout potential barrier      1081
Free path, mean      178
Free states in quantum mechanics      1650
Free states in quantum mechanics for many-particle problems      1728
frequency      125
Frequency cutoff      1442
Frequency resonant      see “Resonant frequencies”
Fresnel diffraction from knife edge      1386
Fresnel integral      816 1386
Friction, expansive      159
Friction, expansive of vibrating string      137 1335
Functional series for differential equations      570—577
Functional series for differential equations and integral representations      576
Functional series for differential equations and recurrence relations      571
Functional series for differential equations completeness of      571
Gamma functions      419—425
Gamma functions analytic continuation      394
Gamma functions and beta functions      425
Gamma functions contour integral for      420
Gamma functions derivatives of      422
Gamma functions duplication formula for      425
Gamma functions infinite product for      421
Gamma functions integral representation of      394
Gamma functions recurrence relation of      419
Gamma functions singularities of      420
Gamma functions Stirling’s approximation      424 443
Gamma functions table of properties      486
Gauge      207 210—212 1875
Gauss’ Theorem      37
Gauss’ theorem for dyadics      66
Gegenbauer functions      547—549 600—604
Gegenbauer functions addition formula      784
Gegenbauer functions and Bessel functions      621
Gegenbauer functions and finiteness boundary condition      715
Gegenbauer functions and hypergeometric function      601 783
Gegenbauer functions and integral equations      938
Gegenbauer functions and Mathieu functions      635
Gegenbauer functions and spheroidal functions      573 643
Gegenbauer functions and Tschebyscheff polynomials      604
Gegenbauer functions density function for      782
Gegenbauer functions eigenvalues and      733
Gegenbauer functions factorization of equation for      731 734
Gegenbauer functions functions expressible as      782
Gegenbauer functions generating function      602
Gegenbauer functions joining formula      602
Gegenbauer functions second solution of equation for      603
Gegenbauer functions table of properties      782
Gegenbauer polynomials      782
Generating functions      748—751 935
Generating functions and semidiagonal kernels      935 954
Generating functions and trigonometric functions      1321
Generating functions for Bessel functions      620
Generating functions for Gegenbauer polynomials      602 782
Generating functions for Hermite polynomials      786
Generating functions for Laguerre polynomials      784
Generating functions for Legendre functions of second kind      753
Generating functions for Legendre polynomials      597 748—751
Generation of electromagnetic waves in duct      1826
Generation of electromagnetic waves in duct input impedance for      1827
Geometrical optics and short-wavelengths approximation      1106
Gibbs’ phenomenon      745
Gradient      31 44 115
Green’s function      791—895
Green’s function and generating functions      802
Green’s function and image method      812—817 863
Green’s function and inhomogeneous problems      805
Green’s function and plane waves      827
Green’s function and reciprocity      701 799 804 838 854 858 866 872 882 890
Green’s function dependence on wave number      821 832
Green’s function discontinuities in      800 801 805
Green’s function eigenfunction expansion for      820—832 892
Green’s function for boundaries      701 710 797 799 801 810
Green’s function for difference equation      700
Green’s function for difference equation and random flight      702
Green’s function for difference equation for boundary      701 710
Green’s function for difference equation reciprocity of      701
Green’s function for diffusion equation      811 857—869 1587 1593 1597
Green’s function for diffusion equation eigenfunction expansion for      864
Green’s function for diffusion equation for age      199
Green’s function for diffusion equation for infinite domain      860
Green’s function for diffusion equation for inhomogeneous problem, solution of      860
Green’s function for diffusion equation for nonuniform scattering      191
Green’s function for diffusion equation image method for      863
Green’s function for diffusion equation table of properties      894
Green’s function for Helmholtz equation and Fourier transforms      1361 1550
Green’s function for Helmholtz equation and image method      812—816
Green’s function for Helmholtz equation and inhomogeneous problem      805—807
Green’s function for Helmholtz equation and Laplace transform      1343
Green’s function for Helmholtz equation and plane-wave expansions      827
Green’s function for Helmholtz equation boundary conditions for      810
Green’s function for Helmholtz equation eigenfunction expansion for      820—832 892
Green’s function for Helmholtz equation for circle      1372
Green’s function for Helmholtz equation for duct      1515
Green’s function for Helmholtz equation for infinite domain      822
Green’s function for Helmholtz equation for parallel planes      814
Green’s function for Helmholtz equation for vibrating string      125 833 1343 1346 scalar below”)
Green’s function for Helmholtz equation in circular cylindrical coordinates      888 1520
Green’s function for Helmholtz equation in elliptic coordinates      1421
Green’s function for Helmholtz equation in parabolic coordinates      1405
Green’s function for Helmholtz equation in polar coordinates      825 827 1372
Green’s function for Helmholtz equation in rectangular coordinates      823 1365 1366 1434
Green’s function for Helmholtz equation in spherical coordinates      887 1466 1469
Green’s function for Helmholtz equation in spheroidal coordinates, prolate      1507
Green’s function for Helmholtz equation scalar      803—833 887 888
Green’s function for Helmholtz equation table of properties      891
Green’s function for Helmholtz equation with variable boundary admittance      1367
Green’s function for infinite domain      822
Green’s function for Klein — Gordon equation      139 854
Green’s function for Laplace equation      799 887 1175 1179 1188
Green’s function for Laplace equation, scalar      798 800
Green’s function for Laplace equation, scalar and Poisson integral formula      814
Green’s function for Laplace equation, scalar by image method      812—816
Green’s function for Laplace equation, scalar for bipolar coordinates      1213
Green’s function for Laplace equation, scalar for bispherical coordinates      1301
Green’s function for Laplace equation, scalar for cartesian coordinates      1175 1179 1256
Green’s function for Laplace equation, scalar for cartesian coordinates within rectangular enclosure      1258
Green’s function for Laplace equation, scalar for circular cylinder coordinates      1263
Green’s function for Laplace equation, scalar for elliptic coordinates      1202
Green’s function for Laplace equation, scalar for infinite domain      822
Green’s function for Laplace equation, scalar for parabolic coordinates      1208 1298
Green’s function for Laplace equation, scalar for polar coordinates      1188
Green’s function for Laplace equation, scalar for spherical coordinates      1273
Green’s function for Laplace equation, scalar for spheroidal coordinates oblate      1295
Green’s function for Laplace equation, scalar for spheroidal coordinates prolate      1291
Green’s function for Laplace equation, scalar for static string      123
Green’s function for Laplace equation, scalar toroidal      1304
Green’s function for Laplace equation, table of properties      891
Green’s function for Laplace equation, vector      1788
Green’s function for Laplace equation, vector in polar coordinates      1798
Green’s function for Laplace equation, vector in spherical coordinates      1801
Green’s function for Schroedinger equation, two-particle      1711 1730
Green’s function for Sturm — Liouville equation      832
Green’s function for telegraphist’s equation      866
Green’s function for wave equation, scalar      834—857
Green’s function for wave equation, scalar boundary conditions for      834
Green’s function for wave equation, scalar boundary conditions for eigenfunction expansion of      849
Green’s function for wave equation, scalar boundary conditions for eigenfunction expansion of for infinite region      838—846
Green’s function for wave equation, scalar boundary conditions for eigenfunction expansion of for infinite region one dimension      843
Green’s function for wave equation, scalar boundary conditions for eigenfunction expansion of for infinite region three dimensions      836
Green’s function for wave equation, scalar boundary conditions for eigenfunction expansion of for infinite region two dimensions      842
Green’s function for wave equation, scalar boundary conditions for eigenfunction expansion of image method for      848
Green’s function for wave equation, scalar initial conditions for      834
Green’s function for wave equation, scalar reciprocity and      834
Green’s function for wave equation, scalar table of properties      893 (see also “Helmholtz equation scalar above”)
Green’s function for wave equation, vector      1789 (see also “Helmholtz equation vector above”)
Green’s function in abstract vector space      see “Green’s functions”
Green’s function integral equation for      890 914
Green’s function integral representation for      415 822
Green’s function singular nature of      808—810
Green’s function symmetry of      see “Reciprocity above”
Green’s function table of properties      890—894
Green’s function vector      1769 1777
Green’s function vector and inhomogeneous problem      1770
Green’s function vector expansion in eigenfunctions      1777
Green’s function vector for elastic waves      1783
Green’s function vector for electromagnetic waves in duct      1823
Green’s function vector for electromagnetic waves in resonator      1850
Green’s function vector for infinite domain      1778
Green’s function vector for spherical cavity      1873
Green’s function vector in spherical coordinates      1874
Green’s function vector longitudinal      1779
Green’s function vector transverse      1779
Green’s functions and Green’s operator      881
Green’s functions and Hermitian operators      883
Green’s functions and integral equation      939 952
Green’s functions and non-Hermitian operators      884
Green’s functions and reciprocity      882
Green’s functions for inhomogeneous integral equation      993
Green’s functions in abstract vector space      878—886
Green’s operator      881 912
Green’s operator expansion of      883 886
Green’s Theorem      803
Green’s theorem generalization of      870
Green’s theorem vector      1767
1 2 3 4 5 6 7 8 9 10 11 12 13
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå