Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Morse P., Feshbach H. — Methods of Theoretical Physics (part 1)
Morse P., Feshbach H. — Methods of Theoretical Physics (part 1)



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Methods of Theoretical Physics (part 1)

Àâòîðû: Morse P., Feshbach H.

ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1953

Êîëè÷åñòâî ñòðàíèö: 997

Äîáàâëåíà â êàòàëîã: 16.04.2007

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Cylinders, concentric elliptic, in uniform field      1199
Cylinders, concentric in electrostatic field      1184
Cylinders, concentric potential between two      1210
Cylinders, concentric scattering by      1376 1862
Cylinders, concentric with slit      1387 1392
Cylinders, concentric, field in      1183
Cylindrical Bessel functions      see “Bessel functions”)
Cylindrical coordinates and separation of variables      514
Dalitz integral      1083
Definite kernel      909 910 992
Definite kernel transformation to      910
Deflection admittance      1367
Deformation of contours      366
Degeneracy      79 725 1476 1673
Degeneracy and Stark effect      1676
Degeneracy and variational principle      737
DEL      7 31—44
Del table of relations      114—115
Delta function Dirac      122 240 813
Delta function Dirac and normalization of eigenfunctions      764
Delta function Dirac derivative of      837 839
Delta function Dirac expansion in eigenfunctions      719 729
Delta function Dirac in generalized coordinates      830
Delta function Dirac in polar coordinates      825
Delta function Kronecker      23
Density function for eigenfunctions      728 781
Density function for Gegenbauer polynomials      782
Density function for Hermite polynomials      786
Density function for Laguerre polynomials      784
Density function for Legendre functions, associated      782
Density function for Tschebyscheff polynomials      782
Density of eigenvalues      759—762
Density of eigenvalues continuous distribution      762
Density of eigenvalues for Schroedinger equation      767—768
Density particle      1614
Derivatives of analytic function      374
Derivatives of analytic function and Cauchy’s integral formula      375
Determinant, secular      see “Secular determinant”
Diagonal kernels      951 961
Diagonal matrix      777
dielectric constant      201
Dielectric constant boundary conditions on surface of      217
Difference equations and recursion formulas      540
Difference equations for hyperbolic equation      703
Difference equations for Laplace equation      695
Difference equations for parabolic equation      705 778
Difference equations for Poisson equation      695
Difference equations Green’s function for      see “Green’s function”
Difference equations, first-order linear      693
Differential equations, ordinary      492—675
Differential equations, ordinary adjoint      526 871
Differential equations, ordinary Bessel      553 619 1321
Differential equations, ordinary Bessel spherical      622 1465 1477
Differential equations, ordinary classification of      534
Differential equations, ordinary confluent hypergeometric functions      551 604
Differential equations, ordinary coulomb      550 553 631 1664
Differential equations, ordinary functional series and      570—577
Differential equations, ordinary Gegenbauer      547 600 782
Differential equations, ordinary homogeneous      493
Differential equations, ordinary, hypergeometric      542 588 668
Differential equations, ordinary, hypergeometric and integral equations      945
Differential equations, ordinary, hypergeometric and integral representations      574 577—646
Differential equations, ordinary, hypergeometric and recursion relations      539 568
Differential equations, ordinary, hypergeometric independent solutions for      524
Differential equations, ordinary, hypergeometric indicial equation and      532
Differential equations, ordinary, hypergeometric inhomogeneous      529
Differential equations, ordinary, hypergeometric Legendre      545 594 1325
Differential equations, ordinary, hypergeometric linear      492
Differential equations, ordinary, hypergeometric ordinary point of      530
Differential equations, ordinary, hypergeometric Papperitz      539
Differential equations, ordinary, hypergeometric partial      see “Partial differential equations”
Differential equations, ordinary, hypergeometric regular      532
Differential equations, ordinary, hypergeometric singular point of      516
Differential equations, ordinary, hypergeometric standard forms of      534 667
Differential equations, ordinary, hypergeometric table      667
Differential equations, ordinary, hypergeometric Wronskian      524
Differential scattering cross section      1066 1706
Diffraction by hole in infinite plane      1520
Diffraction by knife edge      1386 1406
Diffraction by knife edge integral equation for      900
Diffraction by slit      1430
Diffraction perturbation methods for      1073—1106
Diffraction, Fraunhofer      887
Diffuse emission      1618
Diffuse emission and Laplace transform      1624
Diffuse reflection      1619
Diffusion      171—200 1584—1606
Diffusion and age      1599
Diffusion and conformal mapping      1218
Diffusion and continuity equation      172
Diffusion and distribution function      174
Diffusion and external forces      194
Diffusion and fission      1595—1604
Diffusion and transient heating      1585
Diffusion constant of      173
Diffusion equation      137 171—200 1584—1606
Diffusion equation and age equation      1600
Diffusion equation and parabolic equations      173
Diffusion equation for nonuniform scattering      189
Diffusion equation for nonuniform scattering Green’s function for      191
Diffusion equation for particles      1592—1604
Diffusion equation Green’s function for      see “Green’s function”
Diffusion equation image method      862 1588
Diffusion equation inhomogeneous equation      859
Diffusion equation Lagrange density for      313
Diffusion equation reciprocity principle for      858
Diffusion equation variational principle for      313—314
Diffusion equation vector      163 1812
Diffusion of fluids      173 (see also “Distribution functions”)
Diffusion of heat      173 1585—1592 1604—1606
Diffusion of light      180
Diffusion of liquids through porous solids      172
Diffusion of neutrons      see “Neutron diffusion”
Diffusion of particles      see “Particle diffusion”
Dilation      68
Dilationless stretch      69
Dipoles      1276
Dipoles electric, induced      1886
Dipoles electric, induced and induced currents      1887
Dipoles electric, induced radiation from      1868 1878 1880
Dipoles function, dyadic      1886
Dipoles magnetic, induced      1886
Dipoles magnetic, induced and induced currents      1887
Dipoles magnetic, induced radiation from      1868 1879 1880
Dipoles source      1479
Dirac delta function      see “Delta function”
Dirac equation      260—265 335—337
Dirac equation and spin operators      259
Dirac equation angular momentum, total      263
Dirac equation charge and current density      261 337
Dirac equation energy density      336
Dirac equation Euler equation      336
Dirac equation field intensity      336
Dirac equation field momentum density      336
Dirac equation Lagrange density      335
Dirac equation plane-wave solution      264
Dirac equation stress-energy tensor      336
Dirac equation table      346
Dirac equation under Lorentz transformation      262
Direction cosines      22
Directional derivative      32
Directional derivative in tensor notation      51
Dirichlet boundary conditions      495 679 706 807 875
Dirichlet boundary conditions and boundary perturbations      1043 1060
Dirichlet boundary conditions and elliptic equations      696 703
Dirichlet boundary conditions and Green’s functions      807
Dirichlet boundary conditions and hyperbolic equation      686 704
Dirichlet boundary conditions images for      813
Dirichlet boundary conditions variational principle involving      1113 1132
Disk vibrating radiation from      1512
Disk vibrating, acoustic impedance of      1512
Disk, scattering from      1521
Dispersion of electromagnetic waves in duct      1820
Dispersion of electromagnetic waves in duct and Klein — Gordon equation      140
Displacement field      201
Dissipative systems      298—302
Dissipative systems and variational principle for diffusion equation      313
Dissipative systems impedance for      299—302
Dissipative systems variational principle for      298
Distribution functions      174—200 1606—1638
Distribution functions age theory      197 1635
Distribution functions and equation of state of gas      176
Distribution functions and external forces      194
Distribution functions and nonuniform scattering      188
Distribution functions boundary conditions      185
Distribution functions continuity equation      176
Distribution functions diffuse emission and reflection      1618
Distribution functions diffusion of light      180—188 1617—1628
Distribution functions diffusion of light Milne equation      182 187 1624—1628
Distribution functions diffusion of light, diffusion approximation      184
Distribution functions diffusion of neutrons      see “Diffusion of light above”
Distribution functions equation for      1607 1617
Distribution functions for forward scattering      1610 1748 1750
Distribution functions kinetic energy, average      175
Distribution functions mean free path      178
Distribution functions moments of      1614
Distribution functions steady-state      1613
Distribution functions variational method for      1628
Distribution functions with energy loss on collision      196 1630
Divergence      34
Divergence condition in electromagnetism      326
Divergence tensor notation for      50
Diverging waves      146 1065
Double periodic functions      427
Drift due to force field      195
Driving-point impedance      130 1845
Ducts and conformal mapping      1448
Ducts attenuation in      1441
Ducts constriction in      1443
Ducts elastic      1459
Ducts elbow bend in      1447
Ducts integral equation for      1516
Ducts iris diaphragm in      1443 1514
Ducts lined      1522
Ducts radiation from termination of      1455 1529—1537
Ducts sound waves in      1349—1357 1440—1462
Ducts variational principle for      1128 1517
Ducts viscous flow through      1794—1795
Ducts viscous flow through nonstationary      1848
Ducts, electromagnetic waves in      1819—1838
Ducts, electromagnetic waves in attenuation in      1828—1832
Ducts, electromagnetic waves in change in duct size      1834
Ducts, electromagnetic waves in constriction in      1834
Ducts, electromagnetic waves in dispersion of      1820
Ducts, electromagnetic waves in excitation of resonator by      1856
Ducts, electromagnetic waves in from wire across      1838
Ducts, electromagnetic waves in Green’s function for      1823
Ducts, electromagnetic waves in impedance effective for      1822—1823 1833
Ducts, electromagnetic waves in reflection, from end of      1832
Ducts, electromagnetic waves in transverse electric waves      1819
Ducts, electromagnetic waves in transverse magnetic waves      1822
Ducts, electromagnetic waves in wave generation in      1826
Ducts, sound waves in, with varying cross section      1352
Duplication formula for gamma functions      424
Dyadics      54—73
Dyadics admittance      325 334
Dyadics and tensors      54
Dyadics as vector operators      55
Dyadics dipole function      1886
Dyadics Gauss’ theorem for      66
Dyadics Green’s function      1769
Dyadics impedance      285 325 333 1815
Dyadics operators      72
Dyadics principal axes of      59
Dyadics scattering      1897
Dyadics Stokes’ theorem for      66
Dyadics strain      67
Dyadics stress      70
Dyadics symmetric      58
Dyadics symmetric and eigenvalue problem      59
Dyadics unitary      62
Dynamics, classical      see “Classical me chanics”
D’Abmbertian      98 208
D’Alembert’s solution of wave equation      844
Effective area      1520
Effective range of interaction      1091
Effective width      1379
Eigenfunctions      706—778
Eigenfunctions and boundary conditions      699 708 711—716
Eigenfunctions and density function      728 781—786
Eigenfunctions and Dirac delta functions      719 729
Eigenfunctions and factorization method      729—736
Eigenfunctions and factorization method, table      788
Eigenfunctions and Fourier series      707 743 745
Eigenfunctions and generating functions      748
Eigenfunctions and variational principle      736
Eigenfunctions asymptotic formulas for      739—743
Eigenfunctions completeness of      708 726—729 73&-739
Eigenfunctions degeneracy of      79 725 1476 1673
Eigenfunctions equation for      78 718
Eigenfunctions equation for integral      902
Eigenfunctions for continuous distribution of eigenvalues      762
Eigenfunctions for Laplace equations for coordinates bispherical      1301
Eigenfunctions for Laplace equations for coordinates cartesian      1175
Eigenfunctions for Laplace equations for coordinates circular cylinder      1259 1262
Eigenfunctions for Laplace equations for coordinates ellipsoidal      1306
Eigenfunctions for Laplace equations for coordinates elliptic      1196
Eigenfunctions for Laplace equations for coordinates, bipolar      1210
Eigenfunctions for wave equation and Laplace transforms      1347
Eigenfunctions for wave equation for parabolic coordinates      1400
Eigenfunctions for wave equation for polar coordinates      1372
Eigenfunctions for wave equation for rectangular coordinates      1365 1434
Eigenfunctions for wave equation for spherical coordinates      1467
Eigenfunctions for wave equation for spheroidal coordinates      1502
Eigenfunctions for wave equation, for elliptic coordinates      1408
Eigenfunctions Green’s function in, expansion of      820—831 849 864 892
Eigenfunctions Green’s function in, expansion of and image method      817
Eigenfunctions in abstract vector space      716
Eigenfunctions in several dimensions      753
Eigenfunctions nonorthogonal      1034—1038 1345 1366
Eigenfunctions normalization of      728 764 833
Eigenfunctions orthogonality      60 718 727 764
Eigenfunctions orthonormal      729
Eigenfunctions series of      726
Eigenfunctions series of comparison with Fourier series      743 745
Eigenfunctions series of Gibbs’ phenomenon      748
Eigenfunctions types      see “Coulomb”; “Fourier”; “Gegenbauer”; “Hermite”; “Jacobi”; “Laguerre”; “Legendre”; “Tschebyscheff”
Eigenfunctions, for Laplace equations for coordinates parabolic      1207 1297
Eigenfunctions, for Laplace equations for coordinates polar      1183
Eigenfunctions, for Laplace equations for coordinates prolate spheroidal      1288
Eigenfunctions, for Laplace equations for coordinates spherical      1270
Eigenfunctions, for Laplace equations for coordinates, oblate spheroidal      1292 1295
Eigenvalues      78
Eigenvalues and degeneracy      762
Eigenvalues and Sturm — Iiouville problem      721 734
Eigenvalues asymptotic formulas      741
Eigenvalues density of      762
Eigenvalues distribution of      721 724
Eigenvalues distribution of continuous      762
Eigenvalues equation      78 718 902
Eigenvalues Feenberg method for      1010—1018
Eigenvalues for dyadic, symmetric      59
Eigenvalues for eigenvectors      717 775
Eigenvalues for elliptic membrane      757
Eigenvalues for harmonic oscillator      246
Eigenvalues for hydrogenie atoms      632
Eigenvalues for isosceles right triangle      755
Eigenvalues for Mathieu equation      558
Eigenvalues for Mathieu equation continued fraction for      564 567
Eigenvalues for Mathieu equation instability of      560
1 2 3 4 5 6 7 8 9 10 11 12 13
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå