Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Chavel I. — Isoperimetric Inequalities : Differential Geometric and Analytic Perspectives
Chavel I. — Isoperimetric Inequalities : Differential Geometric and Analytic Perspectives



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Isoperimetric Inequalities : Differential Geometric and Analytic Perspectives

Автор: Chavel I.

Аннотация:

This introduction treats the classical isoperimetric inequality in Euclidean space and contrasting rough inequalities in noncompact Riemannian manifolds. In Euclidean space the emphasis is on a most general form of the inequality sufficiently precise to characterize the case of equality, and in Riemannian manifolds the emphasis is on those qualitiative features of the inequality that provide insight into the coarse geometry at infinity of Riemannian manifolds. The treatment in Euclidean space features a number of proofs of the classical inequality in increasing generality, providing in the process a transition from the methods of classical differential geometry to those of modern geometric measure theory; and the treatment in Riemannian manifolds features discretization techniques, and applications to upper bounds of large time heat diffusion in Riemannian manifolds. The result is an introduction to the rich tapestry of ideas and techniques of isoperimetric inequalities, a subject that has its beginnings in classical antiquity and which continues to inspire fresh ideas in geometry and analysis to this very day — and beyond!


Язык: en

Рубрика: Математика/Геометрия и топология/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2001

Количество страниц: 268

Добавлена в каталог: 16.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Measure, inner regular      16
Measure, kinematic, of geodesic flow      127
Measure, locally finite      16
Measure, outer      101
Measure, outer, Borel regular      101
Measure, outer, metric      101
Measure, outer, regular      16 101
Measure, Radon      16
Measure, regular      16
Measure, volume, on graphs      142
Metric, combinatorial      140
Metric, Riemannian      118
Metric, word, on group      141
Milman, V.D.      29
Milnor, J.      143
Model space      124
Model space, isoperimetric inequality in      4
Model space, isoperimetric problem in      4 29
Mollifier      17
Morgan, E.      29 99 116
Moser, J.      183
Mossino, J.      183
Nagy, B.Sz.      221
Narasimhan, R.      29
Nash, J.      183 254
Natural basis of tangent spaces      118
Ndumu, M.N.      224
Nirenberg, L.      183
Noguchi, M.      224
Norm, on group, displacement      141
Norm, on group, word      141
Oprea, J.      51
Orthogonal projection      187
Oshima, Y.      224
Osserman, O.      28 29
Osserman, R.      29
Pang, M.      224
Pansu, P.      248
Payne, L.E.      183
Perimeter      88
Perimeter, geometric      81
Perimeter, set with locally finite      88
Point, critical      18
Principle, Cavalieri      14
Principle, Duhamers      207
Principle, strong maximum, elliptic      19
Principle, strong maximum, parabolic      207
Product Riemannian structure      118
Proner, M.H.      29 224
Qian, Z.      254
Quasi-isometry of metric spaces      140
Quasi-isometry of Riemannian manifolds      128
Rayleigh, Lord      99
Reed, M.      224 254
Reiuey, R.C.      51
Riemann normal coordinates      123
Riemannian distance between points      119
Riemannian manifold      118
Riemannian manifold, discretization of      147
Riemannian manifold, length of path in      119
Riemannian metric      118
Riemannian metric, length of vector in      118
Riesz, E.      221
Rinow, W.      155
Robbins, H.      28
Ros, A.      51
Rough isometry of metric spaces      142
Rudin, W.      29
Saloff-Coste, L.      155 183 184 254
Schmidt, E.      29
Semigroup, one-parameter      190
Semigroup, one-parameter, contractive      190
Semigroup, one-parameter, generator (infinitesmal)      191
Semigroup, one-parameter, generator (infinitesmal), domain of      191
Sesquilinear form      190
Sesquilinear form, nonnegative      190
Sesquilinear form, semibounded from below      190
Set, $\epsilon$-separated      146
Set, Cacciopoli      88
Set, partition of      15
Simon, B.      224 254
Simon, L.      99 116
Sobolev constant, alternate      180
Sobolev constant, in compact case      162
Sobolev constant, of $\mathbb R^n$      44 45
Sobolev constant, of graphs      173
Sobolev constant, of Riemannian manifold      131
Sobolev spaces      23
Stein, E.M.      254
Steiner, J.      99
Stroock, D.W.      254
Study, E.      99
Sullivan, D.      224
Surface area      2 3 17 25 31
Symmetric decreasing rearrangement of functions      70
Symmetrization, Schwarz      69
Symmetrization, Steiner      59
Szego, G.      99 183
Takeda, M.      224
Talenti, G.      28 99
Taylor, M.      253
Tensor, curvature      121
Tensor, Ricci      122
Theorem, Alexandrov's      42 51
Theorem, Bishop — Gromov comparison      126
Theorem, Bishop's comparison      126
Theorem, Blaschke selection      55
Theorem, Caratheodory's      101
Theorem, Coulhon extrapolation      241
Theorem, divergence      2-dimensional 9
Theorem, divergence, Riemannian      32 193
Theorem, Federer — Fleming      45 51
Theorem, Federer — Fleming in Riemannian manifolds      131
Theorem, Helly selection      73
Theorem, Lebesgue density      17
Theorem, Liouville's      127
Theorem, maximal      237
Theorem, Mercer's      221
Theorem, Meyers — Serrin      196 224
Theorem, Rademacher      20
Theorem, Radon — Nikodym      16
Theorem, Riesz representation      16
Theorem, Riesz — Thorin interpolation      236
Theorem, Sard      18
Theorem, Spectral      187
Topping, P.      29
Trudinger, N.S.      29 224
Value, critical      18
Value, regular      18
Vanishes at infinity, function that      69
Varopoulos, N.Th,      156 184 224 253 254
Vector field, admissible      82
Vector field, divergence of, on Riemannian manifold      192
Vector field, radial      128
Volume growth      143
Weinberger, H.E.      29 224
Williams, F.L.      224
Wohlrab, O.      28
Yau, S.T.      224
Yau, ST.      131 224 254
Yosida, K.      224
Zalgaller, V.A.      3 28 99
Ziemer, W.P.      29 99
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте