Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Fritzke B. — Incremental Neuro-fuzzy Systems
Fritzke B. — Incremental Neuro-fuzzy Systems



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Incremental Neuro-fuzzy Systems

Автор: Fritzke B.

Аннотация:

The poor scaling behavior of grid-partitioning fuzzy systems in case of increasing data dimensionality suggests using fuzzy systems with a scatter-partition of the input space. Jang has shown that zero-order Sugeno fuzzy systems are equivalent to radial basis function networks (RBFNs). Methods for finding scatter partitions for RBFNs are available, and it is possible to use them for creating scatter-partitioning fuzzy systems. A fundamental problem, however, is the structure identification problem, i.e., the determination of the number of fuzzy rules and their positions in the input space. The supervised growing neural gas method uses classification or regression error to guide insertions of new RBF units. This leads to a more effective positioning of RBF units (fuzzy rule IF-parts, res]).) than achievable with the commonly used unsupervised clustering methods. Example simulations of the new approach are shown demonstrating superior behavior compared with grid-partitioning fuzzy systems and the standard RBF approach of Moody and Darken.


Язык: en

Рубрика: Математика/

Тип: Статья

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 1997

Количество страниц: 12

Добавлена в каталог: 04.04.2007

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте