Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Robert Lang — Origami Design Secrets Mathematical Methods for an Ancient Art
Robert  Lang — Origami Design Secrets Mathematical Methods for an Ancient Art



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Origami Design Secrets Mathematical Methods for an Ancient Art

Автор: Robert Lang

Аннотация:

This book was a labor of many years. It is both
my earliest book and my latest book; I began
writing up my ideas on how to design when I
began my first book in the early 1980s, but not
until recently have I developed the framework
for those ideas. Over the years, I have been influenced by many
scientists and artists, both inside and outside of origami, all of
whom contributed, one way or another, to the present tome. It
is impossible for me to identify everyone who has contributed
to my work, but some of the larger pieces come from the fol-
following, whom I thank:
Neal Elias, for his encouragement and for introducing me
to the magic of box pleating and the realization that anything
was possible in origami.
Lillian Oppenheimer and Alice Gray, for introducing me
to the wide, wild world of origami fanatics.
Akira Yoshizawa, who started it all, then showed that there
was more to origami art than just clever designs.
Dave Brill, who showed that you could have both clever
design and high art in the same model.
John Montroll, who took origami design to an unequaled
level and who has been a constant source of inspiration and
friendship.
Michael LaFosse, who took origami art to an unequaled
level and Richard Alexander; both have been equally great
friends.
John Smith, James Sakoda, and especially David Lister
for sharing a wealth of information about the history of origami,
both privately and on the origami-L mailing list; David Lister,
as well for numerous private comments and corrections with
respect to origami history.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 2003

Количество страниц: 595

Добавлена в каталог: 01.11.2022

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте