Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Spectral Theory of Ordinary Differential Operators
Автор: Weidmann J.
Аннотация:
These notes will be useful and of interest to mathematicians and physicists active in research as well as for students with some knowledge of the abstract theory of operators in Hilbert spaces. They give a complete spectral theory for ordinary differential expressions of arbitrary order n, construction of self-adjoint realizations via boundary conditions, determination and study of general properties of the resolvent, spectral representation and spectral resolution. Special attention is paid to the question of separated boundary conditions, spectral multiplicity and absolutely continuous spectrum. For the case n=2 (Sturm-Liouville operators and Dirac systems) the classical theory of Weyl-Titchmarch is included. Oscillation theory for Sturm-Liouville operators and Dirac systems is developed and applied to the study of the essential and absolutely continuous spectrum. The results are illustrated by the explicit solution of a number of particular problems including the spectral theory one partical Schr?dinger and Dirac operators with spherically symmetric potentials. The methods of proof are functionally analytic wherever possible.