Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Luigi Ambrosio, Klaus Deckelnick, Gerhard Dziuk, Masayasu Mimura, Vsvolod Solonnikov, Hal — Mathematical Aspects of Evolving Interfaces: Lectures given at the C.I.M.-C.I.M.E. joint Euro-Summer School held in Madeira Funchal, Portugal, July 3-9, ... Mathematics / Fondazione C.I.M.E., Firenze)
Luigi Ambrosio, Klaus Deckelnick, Gerhard Dziuk, Masayasu Mimura, Vsvolod Solonnikov, Hal — Mathematical Aspects of Evolving Interfaces: Lectures given at the C.I.M.-C.I.M.E. joint Euro-Summer School held in Madeira Funchal, Portugal, July 3-9, ... Mathematics / Fondazione C.I.M.E., Firenze)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Mathematical Aspects of Evolving Interfaces: Lectures given at the C.I.M.-C.I.M.E. joint Euro-Summer School held in Madeira Funchal, Portugal, July 3-9, ... Mathematics / Fondazione C.I.M.E., Firenze)

Авторы: Luigi Ambrosio, Klaus Deckelnick, Gerhard Dziuk, Masayasu Mimura, Vsvolod Solonnikov, Hal

Аннотация:

Interfaces are geometrical objects modelling free or moving boundaries and arise in a wide range of phase change problems in physical and biological sciences, particularly in material technology and in dynamics of patterns. Especially in the end of last century, the study of evolving interfaces in a number of applied fields becomes increasingly important, so that the possibility of describing their dynamics through suitable mathematical models became one of the most challenging and interdisciplinary problems in applied mathematics. The 2000 Madeira school reported on mathematical advances in some theoretical, modelling and numerical issues concerned with dynamics of interfaces and free boundaries. Specifically, the five courses dealt with an assessment of recent results on the optimal transportation problem, the numerical approximation of moving fronts evolving by mean curvature, the dynamics of patterns and interfaces in some reaction-diffusion systems with chemical-biological applications, evolutionary free boundary problems of parabolic type or for Navier-Stokes equations, and a variational approach to evolution problems for the Ginzburg-Landau functional.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Издание: 1

Год издания: 2003

Количество страниц: 248

Добавлена в каталог: 02.08.2019

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте