Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Rudin W. — Real and Complex Analysis
Rudin W. — Real and Complex Analysis



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Real and Complex Analysis

Автор: Rudin W.

Аннотация:

This is an advanced text for the one- or two-semester course in analysis taught primarily to math, science, computer science, and electrical engineering majors at the junior, senior or graduate level.


Язык: en

Рубрика: Математика/Анализ/Продвинутый анализ/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1970

Количество страниц: 412

Добавлена в каталог: 02.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Inner product      75
Inner regular set      47
integral      19 24 130 202
Integration      19
Integration by parts      176 226 239
Integration of derivative      166 168
Integration over measurable set      20
Integration over path      202
Integration with respect to complex measure      130
Interior      254
Interpolation      246 298
Intersection      6
interval      7
Invariant subspace      190 341
Inverse function theorem      173
Inverse image      7
Inverse mapping      7 217
inversion      269
Inversion formula      182
Inversion theorem      186 187 189
Invertible element      352
Invertible operator      171
Isolated singularity      211
Isometry      84 187 363 365
Isomorphism      86 187 363 365
Iterated integral      141 143
Jacobian      174 221
Jensen’s formula      300
Jensen’s Inequality      61 300
Jordan curve      282
Jordan decomposition      120 127 340
Jordan, C      5
Kahane, J. P.      398
Kakutani, S.      398
Kernel      357
Koebe mapping      287
Laplace equation      223
Laplacian      196 223
Laurent series      266
Lebesgue decomposition      122 155
Lebesgue integrable function      24 52 69
Lebesgue integral      19
Lebesgue measurable set      50
Lebesgue measure      50
Lebesgue set      158
Lebesgue, H. J.      5 21 26 165 393 395
Left-continuous function      161 179
Left-hand limit      161
Length      176 203
Limit, pointwise      14
Limit, pointwise, in mean      66
Limit, pointwise, in measure      73
Limit, pointwise, of measurable functions      14
linear combination      81
Linear fractional transformation      269 288
Linear independence      81
Linearly ordered set      87
Liouville’s theorem      213 274 354
Lipschitz condition      114
Locally compact space      36
Locally integrable function      196 237
Logarithm      221 263
Lowdenslager, D.      343 398
Lower derivative      153
Lower half plane      230
Lower limit      14
Lower semicontinuous function      37
Lusin’s theorem      53
Mandelbrojt, S.      399
Mapping      7
Mapping, continuous      8
mapping, one-to-one      7
Mapping, open      99 173 216
Maximal ideal      357 360
Maximal orthonormal set      85
Maximal subalgebra      361
Maximality theorem      392
Maximum modulus theorem      111 213 249 258 357
Mean value property      230 237
Measurable function      8 28 150 393
Measurable set      8 50
Measurable space      8
Measure      16
Measure space      16
Measure, $\sigma$-finite      47
Measure, absolutely continuous      121 335
Measure, Borel      47
Measure, complete      27
Measure, complex      16 131
Measure, continuous      149
Measure, counting      17
Measure, discrete      149
Measure, Lebesgue      50
Measure, positive      16
Measure, real      16
Measure, regular      47 131
Measure, representing      110 394
Measure, signed      120
Measure, singular      121
Measure, translation invariant      50
Mergelyan’s theorem      386 399
Meromorphic function      260 296
Metric      9
Metric density      177
Metric space      9
Minkowski’s inequality      62 65
Mirkil, H.      399
Mittag — Leffler theorem      296 308 309
Modular function      320
Modular group      320
Monotone class      136
Monotone Convergence Theorem      21
Monotone function      176
Monotonicity      17 42
Morera’s theorem      209
Moschovakis, Y. N.      397
Multiplication operator      116 199 341 364
Multiplicative inequality      351
Multiplicative linear functional      360
Multiplicity function      179
Multiplicity of a zero      216 293
Muntz — Szasz theorem      305 309
Natural boundary      313 315 323
Negative part      15
Negative variation      120
Neighborhood      9 35
Neumann, J. von      123 394
Nevanlinna, R.      303
Nonmeasurable set      52 143 395
Nonsingular operator      171
Norm      64 75 95 169 330
Norm-preserving extension      107
Normal family      271
Normalized function      81 161
Normed algebra      351
Normed linear space      95
Nowhere dense      98
Nowhere differentiable function      115
Null space      357
Null-homotopic curve      261
One-parameter family      261 318
One-to-one mapping      7
Onto      7
Open ball      9
Open cover      35
Open mapping theorem      99 216 267 396
Open set      8
Opposite path      203
Orbit      308
Order of entire function      310
Order of pole      211
Order of zero      210
Ordinal      58
Ordinate set      148 395
Oriented interval      203
Orthogonal projection      79 190 343
Orthogonality      35 78
Orthogonality relations      81
Orthonormal basis      85
Orthonormal Bet      81
Ostrowski, A.      314
Outer factor      338
Outer function      336
Outer measure      393
Outer regular set      47
Overconvergence      314
Paley — Wiener theorems      368 370
Parallelogram law      79
Parameter interval      202
Parseval’s identity      85 92 189 213 333
Partial derivative      222
Partial fractions      253
Partial product      290
Partial sum of Fourier series      91 101 116 349
Partially ordered set      87
Partition of set      117 133
Partition of unity      40
Path      202
Perfect set      176
Periodic function      2 88 178 267
Perron, O.      167
Phragmen — Lindelof method      243
Picard theorem      324 398
Plancherel theorem      187 368 371
Plancherel transform      187
Point of density      177
Pointwise limit      14
Poisson integral      112 224 228 235 332
Poisson kernel      112 223
Poisson summation formula      197
Polar coordinates      149
Polar representation of measure      126
Pole      211
Polynomial      110 218
Positive linear functional      34 40 109
Positive measure      16
Positive part      15
Positive variation      120
Positively oriented circle      203
Power series      200 209
Pre-image      7
Preservation of angles      268
Prime end      397
Principal part      211
Product measure      140
Projection      79 190 343 349
Punctured disc      198
Quasi-analytic class      374
Quotient algebra      358
Quotient norm      358
Quotient space      358
Radial limit      226 232 235 304 347
Radical      365
Radius of convergence      200
Radon — Nikodym derivative      122 155
Radon — Nikodym theorem      122 126 156
RANGE      7
Rational function      219 253 284
Real line      7
Real measure      16
Real-linear functional      105
rectangle      136
Reflection principle      230 271 284 396
Region      198
Regular Borel measure      47 131
Regular point      312
Removable set      326
Removable singularity      211
Representable by power series      200
Representation theorems      40 80 128 131
Representing measure      110 394
Residue      215
Residue theorem      215 259 260
Resolvent      365
Restriction      20 109
Riemann integral      5 34 51
Riemann mapping theorem      264 273 287
Riemann sphere      252
Riemann — Lebesgue lemma      103
Riess, M.      328 335 345 396
Riesz representation theorem      34 40 131 234 256 393
Riesz, F.      34 328 335 393 396
Riesz-Fischer theorem      85 91 92 333
Right-hand derivative      395
Right-hand limit      161
Root test      200
Rotation      269
Rotation invariance      178
Rouche’s Theorem      218 266 275
Rubel, L. A.      397
Runge’s theorem      255 258 397
Saks, S.      393
scalar      33
Scalar product      75
Schwartz, J. T.      394
Schwarz inequality      49 75
Schwarz lemma      240
Schwarz reflection principle      230
Schwarz, H. A.      396
Second category      98
Section      136
Segment      7
Separable space      93
Set      6
Set, $F_{\sigma}$      12
Set, $G_{\delta}$      12
Set, Borel      12
Set, closed      12 35
Set, compact      35
Set, connected      198
Set, convex      78
Set, dense      56
Set, elementary      136
Set, empty      6
Set, inner regular      47
Set, measurable      8 50
Set, nonmeasurable      52 143 395
Set, open      8
Set, outer regular      47
Set, partially ordered      87
Set, perfect      176
Set, strictly convex      113
Set, totally disconnected      56
Set, totally ordered      87
Shift operator      341
Sierpinski, W.      143 395
Signed measure      120
Simple boundary point      279
Simple function      15 67
Simply connected      262 319 325
Sine      2 251
Singer, I. M.      394 399
Singular function      168
Singular measure      121 337 344
Singular point      312
Snow, D. O.      395
Space, Banach      95 331
Space, compact      35
Space, complete metric      66 76 95
Space, dual      108 128 238
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте