Авторизация
Поиск по указателям
Kriegl A., Michor P.W. — The Convenient Setting of Global Analysis
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: The Convenient Setting of Global Analysis
Авторы: Kriegl A., Michor P.W.
Аннотация: This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory. The approach is simple: a mapping is called smooth if it maps smooth curves to smooth curves. Up to Fréchet spaces, this notion of smoothness coincides with all known reasonable concepts. In the same spirit, calculus of holomorphic mappings (including Hartogs' theorem and holomorphic uniform boundedness theorems) and calculus of real analytic mappings are developed. Existence of smooth partitions of unity, the foundations of manifold theory in infinite dimensions, the relation between tangent vectors and derivations, and differential forms are discussed thoroughly. Special emphasis is given to the notion of regular infinite dimensional Lie groups. Many applications of this theory are included: manifolds of smooth mappings, groups of diffeomorphisms, geodesics on spaces of Riemannian metrics, direct limit manifolds, perturbation theory of operators, and differentiability questions of infinite dimensional representations.
Язык:
Рубрика: Математика /Анализ /Продвинутый анализ /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1997
Количество страниц: 618
Добавлена в каталог: 02.04.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Extension, k-jet 431
Exterior algebra 57
Exterior derivative, covariant 392 399
Exterior derivative, global formula for 342
E’, space of bounded linear functionals 8
f-dependent 366
F-evaluating 184
F-foliated diffeomorphism 272
f-related vector fields 329
f-related vector valued differential forms 366
Fast converging sequence 17 18
Fast falling 17
Fiber bundle 375
Fiber bundle, gauge group of a 479
Fiber bundle, principal 380
Fiber of the operational tangent bundle 284
Fiber of the tangent bundle 284
Fibered composition of jets 431
Final smooth mapping 272
Finite type polynomial 60
First uncountable ordinal number 49
Flat at 0, infinitely 61
Flatness, order of 539
Flip, canonical 293
Flow line of a kinematic vector field 329
Flow of a kinematic vector field, local 331
Foliation 272
Foot point projection 284
Formally real commutative algebra 305
Frame bundle 477
Frame bundle, nonlinear 477
Frechet space 577
Frechet space, graded 557
Frechet space, tame graded 559
Frechet-differentiable 128
Frobenius theorem 330 331
Frolicher space 238
Frolicher — Nijenhuis bracket 361
Functor, smooth 290
Fundamental theorem of calculus 17
Fundamental vector field 375 375
G-atlas 379
G-bundle 379
G-bundle, homomorphism of 384
G-structure 379
G?ateaux-differentiable 128
Gauge group of a fiber bundle 479
Gauge transformations 385
General curve lemma 118
Generating set of functions for a Frolicher space 239
Germ of f along A 274
Germs along A of holomorphic functions 92
Global resolvent set 549
Globally Hamiltonian vector fields 460
Graded derivations 358
Graded Frechet space 557
Graded Frechet space, tame 559
Graded-commutative algebra 57
Graph topology 435
Grassmann manifold 514
Group, diffeomorphism 454
Group, holonomy 426
Group, Lie 369
Group, reduction of the structure 381
Group, regular Lie 410
Group, restricted holonomy 426
Group, smooth 432
Groups, extension of 412
Hamiltonian vector field 460
Hausdorff, smoothly 265
Holder mapping 128
Holomorphic atlas 264
Holomorphic curve 81
Holomorphic diffeomorphisms 264
Holomorphic mapping 83
Holomorphic mappings, initial 268
Holomorphic vector bundle 287
Holonomy group 426
Homogeneous operational tangent vector of order d 277
Homomorphism of G-bundles 384
Homomorphism of principal fiber bundles 381
Homomorphism of vector bundles 289
Homomorphism over of principal bundles 381
Homotopy operator 355
Horizontal bundle 376
Horizontal differential forms 392
Horizontal G-equivariant W-valued differential forms 401
Horizontal lift 376
Horizontal projection 376
Horizontal space of a connection 366
Horizontal vectors of a fiber bundle 376
Induced connection 394 394
Inductive limit 577
Infinite polygon 18
Infinitely flat at 0 61
Initial mapping 268
Inner automorphism 373
insertion operator 341 399
Integral curve of a kinematic vector field 329
Integral mapping 136
Integral, definite 16
Integral, Riemann 15
Interpolation polynomial 228
Invariant kinematic vector field 370
Involution, canonical 293
Isomorphism of vector bundles 289
Isomorphism, bornological 8
Jets 431
K', set of accumulation points of K 143
k-jet extension 431
k-jets 431
kE 37
Kelley-fication 37
Killing form on 520
Kinematic 1-form 337
Kinematic cotangent bundle 337
Kinematic differential forms, vector valued 359
Kinematic tangent bundle 284
Kinematic tangent vector 276
Kinematic vector field 321
Kinematic vector field, flow line of a 329
Kinematic vector field, left invariant 370
Kinematic vector field, local flow of a 331
Kothe sequence space 71 581
L(E, F) 33
Lagrange submanifold 460
Leaf of a foliation 273
Left invariant kinematic vector field 370
Left logarithmic derivative 404
Left Maurer — Cartan form 406
Left trivialized derivative 374
Legendre mapping 468
Legendre submanifold 468
Leibniz formula 54
Lie bracket of vector fields 324
Lie derivative 347 360
Lie derivative, covariant 399
Lie group 369
Lie group, regular 410
Lift, horizontal 376
Lift, vertical 293
LIMIT 577
Limit, inductive 577
Limit, projective 577
Linear connection 396 397
Linear mapping, bounded 8
Liouville form 523
Lipschitz bound, absolutely convex 17
Lipschitz condition 9
Lipschitz mapping 128
Lipschitzian curve, locally 9
Local addition 441
Local flow of a kinematic vector field 331
Locally complete space 20
Locally convex space 575
Locally convex space, barrelled 579
Locally convex space, bornological 575
Locally convex space, bornologification of a 575
Locally convex space, bornology of a 8 575
Locally convex space, completion of a 16
Locally convex space, nuclear 580
Locally convex space, reflexive 579
Locally convex space, Schwartz 579
Locally convex space, strong dual of a 579
Locally convex space, strongly nuclear 580
Locally convex space, ultrabornologification of a 575
Locally convex space, weakly realcompact 196
Locally convex vector space, ultra-bornological 580
Locally Hamiltonian vector field 460
Locally Lipschitzian curve 9
Locally uniformly rotund norm 147
Logarithmic derivative, left or right 404
M-convergence condition 39
M-convergent net 12
M-converging sequence 12
m-evaluating 184
m-small zerosets 205
Mackey adherence 48 51
Mackey adherence of order 49
Mackey approximation property 70
Mackey complete space 15
Mackey convergent net 12
Mackey convergent sequence 12
Mackey — Cauchy net 14
Mackey, second countability condition of 159
Mackey-closure topology 19
Mackey’s countability condition 236
Manifold 264
Manifold (complexification of m), complex 105
Manifold, contact 467
Manifold, natural topology on a 265
Manifold, pure 265
Manifold, symplectic 460
Manifoldstructure of 439
Mapping 1-homogeneous 34
Mapping between Frolicher spaces, smooth 239
Mapping, biholomorphic 264
Mapping, bornological 19
Mapping, bounded 19
Mapping, bounded linear 8
Mapping, carrier of a 153
Mapping, complex differentiable 81
Mapping, exponential 372
Mapping, final 272
Mapping, Holder 128
Mapping, holomorphic 83
Mapping, initial 268
Mapping, integral 136
Mapping, Legendre 468
Mapping, Lipschitz 128
Mapping, nuclear 136
Mapping, proper 445
Mapping, real analytic 102
Mapping, smooth 30
Mapping, support of a 153
Mapping, tame smooth 563
Mapping, transposed 326
Mapping, zero set of a 153
Maurer — Cartan form 373
Maurer — Cartan formula 378
Maximal atlas 264
Mean value theorem 10
Mesh of a partition 15
Minkowski functional 11 575
Modeling convenient vector spaces of a manifold 265
Modular 1-form 337
Modules, bounded 63
Monomial of degree p 60
Montel space 579
Multiplicity 539
n-th derivative 58
n-transitive action 472
Natural bilinear concomitants 367
Natural topology 488
Natural topology on a manifold 265
Net, M-convergent 12
Net, Mackey convergent 12
Net, Mackey — Cauchy 14
Nijenhuis tensor 368
Nijenhuis — Richardson bracket 359
Nonlinear frame bundle of a fiber bundle 477
Norm, locally uniformly rotund 147
Norm, rough 135
Norm, strongly rough 158
Norm, uniformly convex 204
Normal bundle 438
Normal smoothly 165
Norming pair 582
Nuclear locally convex space 580
Nuclear mapping 136
Nuclear operator 580
One parameter subgroup 371
Operational 1-form 337
Operational 1-forms of order < k 337
Operational cotangent bundle 337
Operational tangent bundle 283
Operational tangent vector 276
Operational tangent vector of order d, homogeneous 277
Operational vector field 321
Operator, differentiation 33
Operator, homotopy 355
Operator, insertion 341 399
Operator, nuclear 580
Operator, strongly nuclear 580
Operator, trace class 580
Operator, trace of an 580
Order of a derivation 277
Order of flatness 539
Ordinal number , first uncountable 49
Paracompact, smoothly 165
Parallel transport on a fiber bundle 378
Partition of unity 165
Pincipal bundle 380
Pincipal bundle of embeddings 474
Pincipal connection 387
Pincipal right action 380
Plaque of a foliation 273
Poduct of manifolds 264
Poduct rule 54
Poincare lemma 350
Poincare lemma, relative 461
Polar of a set 578
Polynomial 60
Polynomial, finite type 60
Power series space of infinite type 72
Precompact 576
PRI, projective resolution of identity on a Banach space 588
Projection of a fiber bundle 376
Projection of a vector bundle 287
Projection, foot point 284
Projection, horizontal 376
Projection, vertical 293 376
Projective generator 584
Projective limit 577
Projective resolution of identity 588
Projective resolution of identity, separable 588
Proper mapping 445
Pseudo-isotopic diffeomorphisms 510
Pullback 377
Pullback of vector bundles 290
Реклама