Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Fuchssteiner B., Lusky W. — Convex Cones (North-Holland Mathematics Studies)
Fuchssteiner B., Lusky W. — Convex Cones (North-Holland Mathematics Studies)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Convex Cones (North-Holland Mathematics Studies)

Авторы: Fuchssteiner B., Lusky W.

Аннотация:

The aim of this book is to outline an elementary theory of linear functional on convex cones, but convex cones are here taken in a slightly more general way than usual, they need not be imbedded in a vector space. In consequence, we do not have a general cancellation law for the addition. Typical examples for the cones we have in mind are R = R и {- } or the upper semicontinuous R- valued functions on some topological space. Accordingly, linear functionals on such cones are allowed to attain values in R instead of R . This generality has advantages with respect to extensions of linear functionals.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1981

Количество страниц: 438

Добавлена в каталог: 16.08.2015

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Order dual      113 153
Order unit      90 290 356
Order unit cone      90
Order unit cone homomorphism, isomorphism      91
Order unit functional      90 150
Order unit homomorphism      91 95
Order, $\phi$- pointwise, $\phi$- decomposition      118
Partial Decomposition Theorem      183
Partially decomposable      180
Phragmen—Lindeloef Principle      20
Pointwise infimum, supremum      97
Polish      231 297
Polya      173
Polyhedric cone      31
Pontryagin duality      363 370
Portenier      198
Positive      362
Positive cone      107
Positive dual cone      113 154
Positive flow      55 57
Positive type      367
Positively homogeneous      43
Positively independent      26 30
Possible flow      55 57
Possible plan      62 66
Poulsen simplex      340
Preorder      2
Production capacity      54 60 61 62 66
Pseudocompact      252 296
R- valued measure      100 305 396
Radon      248
Radon — Nikodym theorem      47 395
Radon — Nikodym — Property (RNP)      198 249 250
Rainwater's theorem      304
Raw material bound      62 66
Real-linear      355
Realcompactification      315
Regular measure      228 391
Regular open set      171
Representation      184
Representation theorem      210
Representing measure      179 203 258 281 291 305 328 390
Riemann — Lebesgue lemma      374
Riesz      172 248
Riesz decomposition property      172
Riesz interpolation property      172
Riesz property      88 107
Riesz representation theorem      37 204 208 227 392
Riesz — Koenig Theorem      34 227
Rode      79
Rodriguez-Salinas      74 78
Ryser      85
S- state      306
Saks      248
Sandwich theorem      2 4 10
Saturation bound      58 61 66
Schep      397 401
Schmidt, E.      72
Seevers      22 75
Selfadjoint element      355
Semadeni      173
Semicontinuous      8 38 192 212 244 253 258 288 298 334 349 382 386
Semigroup      2
Semiinterpolation property (SIP)      16 19 122 207
Semilattice-cone      102
Seminorm      33
Semisimple      366
Separation theorem      33
Set of domination      318
Set of strong domination      318
Shermann      173
Shilov      303
Shilov boundary      261
Shirota      337
Sibony      237 239
Siciak      304
Signed representing measure      213
Sikorski      88 100
Simons      78 300
Simons' Convergence Lemma      287
simplex      286 378
Simplicial cone      88 131 281 378
Simplicial map      131
Spectral radius norm      352
State      90 204 362
State space      90
Stegall      199
Stone      97
Stone space      87 171
Stone — Czech compactification      98 171 229 248 315 338
Stone — Weierstrass theorem      96 274 344 360 367
Strassen      83 173
Strictly decomposable      180
Strictly representing measure      203 213
Strong maximum point      258
Strongly exposed point      199
Sub-lattice cone      125
Subadditive      3 43
Subcone      8
Sublinear      9 43 74
Submultiplicative      351
Subsemigroup      8
Sum Theorem      14
Sup-boundary      331
Superadditive      3 43
Superlinear      9 43
Supp(m)      230 258
Support      228
symmetric      355 362 365
Thomas      250
Three circles theorem      21
Tight measure      49 231 240 249 297
Tong — Katetov Theorem      244 387
Topsoe      75
Total maximal production      64 66
Truncated      233
Uhl      249
Universal property      115
Unrestricted distributive law      101
Upper integral      389
V. Neumann      393 394
v. Weizsaecker      250
Valadier      44
Vector lattice      2 95 96 207 209 305 396
Vector Valued Representation Theorem      308
VF(X)      191
Vincent-Smith      312
Weak Choquet boundary      259
Weak Dini cone      196 213
Weak-Dini-condition      197
Weakly $\sigma-$ distributive      247 312 400
Weakly monotone      349
Weight function      218
Weil      368
Weinberg      173
Wenjen      338
Winkler      250
Wittstock      82
Wolff      44 176
Wright, Maitland      171 311 400
X- monotone      43 52
Y- monotone      220
Zero-one matrix      85
Zero-one measure      316
Zero-set filter      338
Zorn's lemma      4 46 211 254 276 306
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте