Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Wester M.J. — Computer Algebra Systems: A Practical Guide
Wester M.J. — Computer Algebra Systems: A Practical Guide



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Computer Algebra Systems: A Practical Guide

Àâòîð: Wester M.J.

Àííîòàöèÿ:

This thorough overview of the major computer algebra (symbolic mathematical) systems compares and contrasts their strengths and weaknesses, and gives tutorial information for using these systems in various ways.
  • Compares different packages quantitatively using standard 'test suites'
  • Ideal for assessing the most appropriate package for a particular user or application
  • Examines the performance and future developments from a user's and developer's viewpoint
Internationally recognized specialists overview both the general and special purpose systems and discuss issues such as denesting nested roots, complex number calculations, efficiently computing special polynomials, solving single equations and systems of polynomial equations, computing limits, multiple integration, solving ordinary differential and nonlinear evolution equations, code generation, evaluation and computer algebra in education. The historical origins, computer algebra resources and equivalents for many common operations in seven major packages are also covered.

By providing such a comprehensive survey, the experienced user is able to make an informed decision on which system(s) he or she might like to use. It also allows a user new to computer algebra to form an idea of where to begin.

Since each system looked at in this book uses a different language, many examples are included to aid the user in adapting to these language differences. These examples can be used as a guide to using the various systems once one understands the basic principles of one CAS. The book also includes contributions which look at the broad issues of the needs of various users and future developments, both from the user's and the developer's viewpoint.

The author is a leading figure in the development and analysis of mathematical software and is well known through the 'Wester test suite' of problems which provide a bench mark for measuring the performance of mathematical software systems. The book will help develop our range of titles for applied mathematcians.

The book will provide a unique, fully up-to-date and independent assessment of particular systems and will be of interest to users and purchasers of CAS's.



ßçûê: en

Ðóáðèêà: Computer science/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Óêàçàòåëü â ïðîöåññå çàïîëíåíèÿ

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1999

Êîëè÷åñòâî ñòðàíèö: 505

Äîáàâëåíà â êàòàëîã: 11.02.2015

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Linear ordinary differential equations, solution of, input-driven methods      191 195—196
Linear ordinary differential equations, solution of, output-driven methods      191 198—200
Linear ordinary differential equations, solution of, transformation methods      196—198
Linear ordinary differential equations, variation-of-parameters method of solving      198
Liouvillian solutions [of differential solutions]      195 200 207
Lisp, "quote" operator      264
Lisp, evaluation procedure      258 259 264 269—270
Lisp, MuLisp dialect      280
Lisp, Scheme dialect      280
List element, synonyms      383
List generation, synonyms      384
List of expression operands, synonyms      387
List, synonyms      382
Literal constants, handling by CASs      241—242
Literal constants, meaning of term      241n[10]
Load a file, synonyms      382
Logarithmic equations      105—109
Lord Byron, (George)      see also "Lovelace Ada"
Lord Byron, (George), character      329
Lord Byron, (George), daughter      324 329
Lovelace, Ada, Countess of, background and education      324 329
Lovelace, Ada, Countess of, on Babbage's Analytical Engine      325—326 329 330
Lovelace, Ada, Countess of, programming language named after      330n[5]
Lovelock, David      303 306
Macaulay system      345 355
Macsyma Inc., address      17 336
Macsyma, capabilities      6 22—23 314—315 322 336
Macsyma, case-insensitivity      241n[9]
Macsyma, code generation facilities      234 235 236 237 239 240 242 243
Macsyma, compiler in      333
Macsyma, conferences      379
Macsyma, educational use      314—315
Macsyma, evaluation in      264 266 267 269—271 274 279
Macsyma, general characteristics      336 358—359
Macsyma, graphics capabilities      6 20 322
Macsyma, help facilities      6 20 22 315
Macsyma, historical origins      357
Macsyma, implicit differentiation in      307
Macsyma, latest version (422.0) introduced      26
Macsyma, library-handling capabilities      2
Macsyma, manuals      362
Macsyma, newsletter      365
Macsyma, operating systems      336 355
Macsyma, origin of name      360
Macsyma, performance      7 8 13 41—60
Macsyma, performance, algebra      44—45
Macsyma, performance, Boolean logic      41
Macsyma, performance, Chebyshev polynomials      46 82—85 87—93 95—97
Macsyma, performance, code generation      42 238
Macsyma, performance, combinatorial theory      43
Macsyma, performance, complex analysis      34 46—47
Macsyma, performance, differentiation      13 54
Macsyma, performance, equations      21 48—49 103—110 112—119
Macsyma, performance, factoring of polynomials      13
Macsyma, performance, graphing      13
Macsyma, performance, inequalities      49—50 119
Macsyma, performance, integration      13 33—34 54—56
Macsyma, performance, limits computation      13 53—54 157 162 164 167 169 170
Macsyma, performance, matrix theory      50—52
Macsyma, performance, nonlinear equations      13 16 49
Macsyma, performance, number theory      43—44
Macsyma, performance, numbers      41—42
Macsyma, performance, numerical analysis/calculations      13 13 42 322
Macsyma, performance, operators      58—59
Macsyma, performance, ordinary differential equations      13 57—58 192—193 199 202—204 206 209
Macsyma, performance, partial differential equations      58
Macsyma, performance, pattern matching      60
Macsyma, performance, polynomial systems solution      103 126 127 129 132 133 134 135 136 137 138 140 142 143—145
Macsyma, performance, products      53
Macsyma, performance, programming operations      59
Macsyma, performance, recursion relations      13
Macsyma, performance, series      13 56—57
Macsyma, performance, set theory      41
Macsyma, performance, simplifications      13 28 29 33 43 44
Macsyma, performance, special functions      46
Macsyma, performance, statistics      43
Macsyma, performance, sums      13 52—53
Macsyma, performance, tensor analysis      52
Macsyma, performance, transforms      57
Macsyma, performance, trigonometries      45—46 115 117
Macsyma, performance, vector analysis      50
Macsyma, performance, zero equivalence determination      47—48
Macsyma, price/cost      17 22 23
Macsyma, problem-handling capabilities      2
Macsyma, routine-calling capability      235
Macsyma, rule ordering in      282 283
Macsyma, synonyms for, code generation      251—252 382
Macsyma, synonyms for, graphics operations      394
Macsyma, synonyms for, mathematical operations      149 388—394
Macsyma, synonyms for, programming operations      381—388
Macsyma, user interface      6 19 22
Macsyma, word processing capabilities      322
Magma      346
Magma, conferences/workshops      379
Magma, operating systems      346 355
Magnus system      343 355
Main expression operator, synonyms      387
Manipulation of root of a polynomial, synonyms      390
Manuals      30—31 362—363
Manuals, indices      30
Maple, algebraic geometry package      347
Maple, capabilities      8 23—24 315—316 322 337
Maple, case-sensitivity      241
Maple, code generation facilities      234 235 236—241 237 243—244
Maple, compared with other CASs      1 7
Maple, conferences      379—380
Maple, data input formats      300
Maple, educational use      294 300 308 312 315—316
Maple, evaluation in      264 266 267 271—275 279
Maple, general characteristics      337 358—359
Maple, graphics capabilities      8 19 20 23 322
Maple, help facilities      316
Maple, integrability tests      229 232
Maple, kernel in other products      10 337
Maple, language syntax      8 31
Maple, latest version (V Release 5.1) introduced      23 26 145
Maple, library-handling capabilities      2 23—24
Maple, manuals      272—273 362
Maple, Newsletter      365
Maple, operating systems      337 355
Maple, origin of name      360
Maple, parallel functionality in      333 338
Maple, performance      7 8 10 13 41—60
Maple, performance, algebra      44—45
Maple, performance, Boolean logic      41
Maple, performance, Chebyshev polynomials      46 82 84—85 87—93 95—97
Maple, performance, code generation      42 238
Maple, performance, combinatorial theory      43
Maple, performance, complex analysis      34 46—47
Maple, performance, differentiation      13 54
Maple, performance, equations      27 48—49 103—120
Maple, performance, factoring of polynomials      13
Maple, performance, graphing      13
Maple, performance, inequalities      49—50 119
Maple, performance, integration      13 14 54—56
Maple, performance, limits computation      13 53—54 156 157 158 159 160 161 164 167 169
Maple, performance, matrix theory      50—52 248—249
Maple, performance, nonlinear equations      13 49
Maple, performance, number theory      43—44
Maple, performance, numbers      41—42
Maple, performance, numerical analysis/calculations      13 42 322
Maple, performance, operators      58—59
Maple, performance, ordinary differential equations      13 57—58 193 195—197 199 201 203 206—209
Maple, performance, partial differential equations      58
Maple, performance, pattern matching      60
Maple, performance, polynomial systems solution      103 127 128 130 131 133 134 135 136 137 141 142 145—146
Maple, performance, products      53
Maple, performance, programming operations      59
Maple, performance, recursion relations      13
Maple, performance, series      13 56—57
Maple, performance, set theory      41
Maple, performance, simplifications      13 28 29 33 43 44
Maple, performance, special functions      46
Maple, performance, statistics      43
Maple, performance, sums      13 52—53
Maple, performance, tensor analysis      52
Maple, performance, transforms      57
Maple, performance, trigonometries      45—46 115 117
Maple, performance, vector analysis      50
Maple, performance, zero equivalence determination      47—48
Maple, price/cost      18 23
Maple, spreadsheet capability      24 304
Maple, Student package      294 315
Maple, surd function      61n[2]
Maple, synonyms for, code generation      252—253 382
Maple, synonyms for, graphics operations      394
Maple, synonyms for, mathematical operations      149—150 388—394
Maple, synonyms for, programming operations      381—388
Maple, user interface      7—8 23
Maple, word processing capabilities      315—316 322
Mapping anonymous function onto a list, synonyms      386
MAs      339 355
Math Rabbit      294
Math reform      287—289 see
Math reform, calculus textbooks      293 299
Math reform, compared with traditional methods      286—289
Math reform, disadvantages      289
Math reform, example experiment      287—288
Math reform, role of CAS      288—289 306
Math reform, synthesis with traditional format      289—290
Math reform, tutorials      294
Mathcad      10 300 316—317 322 337 338
MathCAD, operating systems      338 355
MathCode C++      333 340
Mathematica, capabilities      9 317—318 322 340
Mathematica, case-sensitivity      241
Mathematica, code generation facilities      235 237 237 242
Mathematica, compiler in      333
Mathematica, conferences      380
Mathematica, educational use      317—318
Mathematica, evaluation in      266 267 274 275—278 279
Mathematica, Feynman diagram package      349
Mathematica, general characteristics      340 358—359
Mathematica, geometric modeling      181—189
Mathematica, graphics capabilities      9 19 322
Mathematica, help facilities      317
Mathematica, integrability package      212 217—218 226—228 229 232
Mathematica, journals      365
Mathematica, language syntax      9 262
Mathematica, latest version (3.0) introduced      1—2 9 26 146
Mathematica, library-handling capabilities      2
Mathematica, manuals      9 363
Mathematica, matrix operations      50—52 265
Mathematica, operating systems      340 355
Mathematica, origin of name      360
Mathematica, parallel functionality in      333 340
Mathematica, performance      7 8 10 13 41—60
Mathematica, performance, algebra      44—45
Mathematica, performance, Boolean logic      41
Mathematica, performance, Chebyshev polynomials      46 82—85 87—93 95—97
Mathematica, performance, code generation      42 238
Mathematica, performance, combinatorial theory      43
Mathematica, performance, complex analysis      34 46—47
Mathematica, performance, differentiation      13 54
Mathematica, performance, equations      27 48—49 103—120
Mathematica, performance, factoring of polynomials      13
Mathematica, performance, graphing      13
Mathematica, performance, inequalities      49—50 119
Mathematica, performance, integration      13 14 54—56
Mathematica, performance, limits computation      13 53—54 155 157 164 165 167 169 170
Mathematica, performance, matrix theory      50—52
Mathematica, performance, nonlinear equations      13 16 49
Mathematica, performance, number theory      43—44
Mathematica, performance, numbers      41—42
Mathematica, performance, numerical analysis/calculations      13 42 322
Mathematica, performance, operators      58—59
Mathematica, performance, ordinary differential equations      13 57—58 193 198 201—202 203—204 205 206 209
Mathematica, performance, partial differential equations      58
Mathematica, performance, pattern matching      60
Mathematica, performance, polynomial systems solution      103 126 127 129 130 132 133 134 135 136 137 138 140 142 146—147
Mathematica, performance, products      53
Mathematica, performance, programming operations      59
Mathematica, performance, recursion relations      13
Mathematica, performance, series      13 56—57
Mathematica, performance, set theory      41
Mathematica, performance, simplifications      13 14 28 29 33 43 44
Mathematica, performance, special functions      46
Mathematica, performance, statistics      43
Mathematica, performance, sums      13 15 52—53
Mathematica, performance, tensor analysis      52
Mathematica, performance, transforms      57
Mathematica, performance, trigonometries      45—46 115 117
Mathematica, performance, vector analysis      50
Mathematica, performance, zero equivalence determination      47—48
Mathematica, price/cost      18
Mathematica, routine-calling capability      235
Mathematica, rule ordering in      282 283
Mathematica, synonyms for, code generation      253 382
Mathematica, synonyms for, graphics operations      394
Mathematica, synonyms for, mathematical operations      150 388—394
Mathematica, synonyms for, programming operations      381—388
Mathematica, tensor analysis packages      349 350
Mathematica, Usenet newsgroup      361
Mathematica, user interface      2
Mathematica, word processing capabilities      322
Mathematical constants and operations, CA synonyms for      388—394
Mathematics education      see also "Computer classroom instruction" "Math "Students"
Mathematics education, current state of affairs (in USA)      290—296
Mathematics education, distance learning      304
Mathematics education, external problems      302—304
Mathematics education, instructional strategies      286—290
Mathematics education, instructional strategies, synthesis between traditional and reform formats      289—290
Mathematics education, instructional strategies, traditional format vs math reform      286—289
Mathematics education, instructional techniques      297—298
Mathematics education, problems and challenges, curriculum      298—299
Mathematics education, problems and challenges, hardware      300
Mathematics education, problems and challenges, institutions      301—302
Mathematics education, problems and challenges, instructional techniques      297—298
Mathematics education, problems and challenges, instructors      296—297
Mathematics education, problems and challenges, software      299—300
Mathematics education, problems and challenges, students      298
Mathematics education, problems and challenges, technological complex/interaction      302
Mathematics education, solutions      304—309
Mathematics education, solutions, dialog between developers and users      305
Mathematics education, solutions, instructional formats      305—306
Mathematics education, solutions, Step Option approach      307—309
Mathlab      333 357
MathLink [facility in Mathematica]      235 340 see
MathLink [facility in Mathematica], MathPlus      333 340
MathSoft, address      17 338
MathSoft, CASs from      10 17 337 338
MathTensor package      350
MathView      10 306 308 318 322 340
MathView, operating systems      340 355
MathWorks, address      17 338
MathWorks, CASs from      10 17 337 338
MATLAB      10 31 337 338
MATLAB, matrix operations notation      31—32 247n[15]
Matrices, confusion with arrays      265
Matrices, generation of, performance of various CASs      13 50
Matrices, generation of, synonyms for      382
Matrices, generation of, test problem      16
Matrices, translation of, into C      238
Matrices, translation of, into Fortran      237
Matrix column dimension, synonyms      383
Matrix element, synonyms      383
Matrix inversion, performance of various CASs      13 248—249
Matrix inversion, test problem      12
Matrix operations      265
Matrix operations, MATLAB notation      31—32 247n[15]
1 2 3 4 5
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå