Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Powell R. — Physics of Solid State Laser Materials (Atomic, Molecular and Optical Physics Series)
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Physics of Solid State Laser Materials (Atomic, Molecular and Optical Physics Series)
Àâòîð: Powell R.
Àííîòàöèÿ: This graduate-level text presents the fundamental physics of solid-state lasers, including the basis of laser action and the optical and electronic properties of laser materials. After an overview of the topic, the first part begins with a review of quantum mechanics and solid-state physics, spectroscopy, and crystal field theory; it then treats the quantum theory of radiation, the emission and absorption of radiation, and nonlinear optics; concluding with discussions of lattice vibrations and ion-ion interactions, and their effects on optical properties and laser action. The second part treats specific solid-state laser materials, the prototypical ruby and Nd-YAG systems being treated in greatest detail; and the book concludes with a discussion of novel and non-standard materials. Some knowledge of quantum mechanics and solid-state physics is assumed, but the discussion is as self-contained as possible, making this an excellent reference, as well as useful for independent study.
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1998
Êîëè÷åñòâî ñòðàíèö: 437
Äîáàâëåíà â êàòàëîã: 22.12.2014
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Group, class 51—54
Group, double-valued representation 55 62
Group, representation 51—54
Group, representations of lattice vibrations 123—127
Group, space 123 149—153
Group, subgroup 55—56
Group, theory selection rules 97—99
GSAG 261
GSGG 261—262
GSGG: Nd 341 345
GSGG: Nd, Cr-Nd energy transfer 345—347
Ham effect 174
Hamiltonian crystal field 58
Hamiltonian electric dipole interaction 90
Hamiltonian electric dipole-dipole 185
Hamiltonian electric quadrupole interaction 90 185
Hamiltonian electromagnetic field 85 87
Hamiltonian electron-phonon interaction 120—122 161—162 170
Hamiltonian energy transfer 184—186
Hamiltonian exchange interaction 184
Hamiltonian ion 32—33 43 49
Hamiltonian ion pairs 177 179
Hamiltonian ion-photon interaction 85 88—91
Hamiltonian lattice vibrations 117—120
Hamiltonian magnetic dipole interaction 90—91 186
Hamiltonian multielectron atom 33 170
Hamiltonian nonadiabatic 161—162
Hartree — Fock approximation 36
Homogeneous broadening 101—103 143
Hopping time 197 202
Host-sensitized energy transfer 182 347
Huang — Rhys factor 154 160 166 168—169 250 267 285
Hund's rules 42 67 217—296
Hypersensitive transition 318—319
Impurity-sensitized energy transfer 182
Inhomogeneous broadening 101 103—104 143 248—250 258—259 352
Ion pairs 175 177—182 245—250 258—259 276 285
Jahn — Teller effect 169—174 269 276 280—282 291
Judd — Ofelt theory 190 309—319
Judd — Ofelt theory, Einstein A coefficient 215
Judd — Ofelt theory, intensity parameters 313 324 341 352—353
Judd — Ofelt theory, linestrength parameters 314
Judd — Ofelt theory, reduced unitary matrix elements 313—314
Judd — Ofelt theory, selection rules 313
KDP 393
Kerr effect 109
Kerr lens mode-locking 109
KGW: Nd 350
Kramer's degeneracy 62 305
KTA 393
KTP 393
Lande factor 43
Lande interval rule 42
Laport rule 96
Laser-induced gratinng spectroscopy 211—213 258 347 365—371
Lattice vibrations 117—128
Lattice vibrations, accepting modes 165
Lattice vibrations, group theory representations 123—128
Lattice vibrations, kinetic energy 118 161—162
Lattice vibrations, local modes 117 123 154
Lattice vibrations, normal modes 122—128 149—154 160—165
Lattice vibrations, potential energy 118—119 161—163
Lattice vibrations, promoting modes 165
Lattice vibrations, self-energy 144
Lattice vibrations, symmetry coordinates 125—128
LBO 393
Lensing 23—25 109—110 113—114
Lensing, nonlinear lensing 23 109—110 113—114
Lensing, thermal lensing 23—25 109—110
LGS 261
LiCAF 261 265—269
Lifetime 4
Lifetime broadening 101 140 143
Lifetime, cavity lifetime 10 20
Lifetime, concentration quenching 176
Lifetime, fluorescence lifetime 7 207
Lifetime, radiative lifetime 4 100 105 188
Lifetime, radiative trapping 176
Ligand field theory 57
Lineshape, spectral 5 11 100—104 249
Lineshape, spectral, Gaussian lineshape 5 11 101 103—105 143
Lineshape, spectral, Lorentzian lineshape 5 11 100—103 143
Lineshape, spectral, Pekarian lineshape 169
Lineshape, spectral, Voigt lineshape 5 101 143
Lineshift, spectral 144—147 249 330—331
Lineshift, spectral, radiationless decay processes 147
Lineshift, spectral, Raman scattering of phonons 144—147
Lineshift, spectral, temperature dependence of the line position 147
Linewidth, spectral 140—144 155 248 276—279 330—331 363
Linewidth, spectral, collision broadening 103
Linewidth, spectral, Doppler broadening 103
Linewidth, spectral, homogeneous broadening 101 143
Linewidth, spectral, inhomogeneous broadening 101 143
Linewidth, spectral, lifetime broadening 101 140 143
Linewidth, spectral, natural linewidth 101 140
Linewidth, spectral, radiationless decay processes 143
Linewidth, spectral, Raman scattering of phonons 141—143
Linewidth, spectral, temperature dependence of the linewidth 143
LiSAF 261 265—269
LiSAF, absorption spectrum 266
LiSAF, crystal field 267—268
LiSAF, electron-phonon coupling 269
LiSAF, fluorescence lifetime 268—269
LiSAF, fluorescence spectrum 266
LiSAF, Huang — Rhys factor 267
LiSAF, Jahn — Teller effect 269
LiSAF, spin-orbit coupling 260
LiSGF 269
LLGG 261—262
Local modes of vibrations 117 123 154
Lorentz local field factor 100 108 310—311
losses 8 14—20
Losses, active 8
Losses, passive 8
LS coupling 41 97 315
Master equation 204—205 212
Material properties 23—30
Maxwell's equations 85
Mean-free-path 203 213
Minilasers 175
Mode-locking 22—23 109 411
Monte Carlo simulation 202
Multiphonon processes 102—107 160—169 359—363
Multiplet 41
Natural linewidth 101 140
Nephelauxetic effect 306
Nonadiabatic Hamiltonian 161—169
Nonlinear optical crystals 348 350 384—407
Nonlinear optical crystals, coherence length 389
Nonlinear optical crystals, harmonic generation 387—394
Nonlinear optical crystals, optical parametric generation 387 394—395
Nonlinear optical crystals, phase matching 388—394
Nonlinear optical crystals, stimulated Raman scattering 395—407
Nonlinear optical processes 107—115
Nonlinear refractive coefficient 109—110
Nonlinear refractive index 24—25 109—114 263
Normal modes of vibration 118—120 123—125 149—154
NPP 341 347—348
NPP, concentration quenching 347
NPP, energy transfer 347
Number operator, photon 87—88
NYAB 350
Optical damage 19 25 264—265
Orbach processes 132—137
Orbitals, electron 34—35 70—77
Oscillator strength 6—7 99—100 105
Output coupling 8 15—17
Partition function 181
Pauli exclusion principle 33 36 67 216 227 295
Pentafluoride 261
Perovskite 261
Phase matching 350
Photoconductivity 176
Point group 50—56
Polarizability see "Atomic polarizability"
Population grating 212
Population inversion 8—9 20—21
Power 11—19
Pr lasers 376—377
principal quantum number 34
Promoting modes of vibration 165
Pulse width, spectral 5—6 11 23
Pulse width, temporal 20—23
Pump efficiency 12 19
Pumping schemes 19
Pumping schemes, avalanche pumping 19
Pumping schemes, energy transfer pumping 19 5.7
Pumping schemes, up-conversion pumping 19 115
Q-switching 20—22
Quantum defect 12
Quantum efficiency 7 106 250 285 333
Quenching parameter 348—350
Racah algebra 302
Racah parameters 47—48 81 219 222 224 232—233 240 261 308
Radiationless decay processes 127—137 162 168 250 278—280 331—332
Radiationless decay processes, direct transitions 130 143 147
Radiationless decay processes, multiphonon processes 132—137 162—169
Radiationless decay processes, selection rules 127 131
Raman laser 350 395—407
Raman scattering of phonons 132 135—137 141—143
Random walk 196—198
Rate equations 206—209 269 273
Reduced mass 32
Representation 51—55
Ruby 215 232—233 237—252 261
Ruby, absorption spectrum 239 262
Ruby, B-lines 241
Ruby, charge transfer bands 241
Ruby, configuration coordinate diagram 249—250
Ruby, crystal field strength 233 240
Ruby, energy levels 238
Ruby, energy transfer 251
Ruby, exchange coupled pairs 245—250
Ruby, excited state absorption 251
Ruby, fluorescence lifetime 242—245
Ruby, fluorescence spectrum 242 246 262
Ruby, Huang — Rhys factors 250
Ruby, N-lines 245—250
Ruby, photocurrent 252
Ruby, quantum efficiency 250
Ruby, R-lines 240 248—250
Ruby, Racah parameters 240
Ruby, radiationless relaxation rates 250
Ruby, S-lines 241
Ruby, stimulated emission cross section 252
Ruby, vibronic transitions 242—243
Russell — Saunders coupling 41 96 215 295
SAPpHiRe 237 276—282
Saturation fluence 18 264—265
Second harmonic generation 108 350
Selection rules, group theory 97—99
Selection rules, radiationless transitions 131
Selection rules, radiative transitions 95—96 98—99
Selection rules, vibronic 140 149—154 165
Self-doubling 109 350
Sensitizer ion 182
Site-selection spectroscopy 210 327—329 336 352 355—357
Six-j symbol 304
Slater determinant 43 72 231
Slater — Condon parameters 46—48 219 222 296—301
Slope efficiency 16 292
Space group 123 149—153
Spatial hole burning 411
Spectral hole burning 210—211
Spectral overlap integral 188
Spectroscopic notation 37 41
Spectroscopic notation, multiplet 41
Spectroscopic notation, multiplicity 41
Spectroscopic notation, spectroscopic term 41
Spectroscopic quality parameter 315 324 341
Spin-flip transition 67
Spin-orbit coupling 32—34 36 41—42 58 170 233—237 269 278 280 300—301 304
Spin-spin coupling 178—180
Spontaneous emission rate 93—95
Stark components 305
Stark effect 41 57
Stimulated emission rate 93—94
Stoichiometric laser materials 175 341 347
Stokes shift 157—159
Subgroup 55—56
Superexchange 181
susceptibility 107—108 111—113
Symmetry coordinates 125—128
Symmetry operation 49—51
Tanabe — Sugano diagrams 232 272—275
Tensor operators 301—319
Term 41
Thermal equilibrium 130 162 180—181
Thermal lensing 25 109—110 114
Thermal relaxation time 131 136—137
Three-j symbols 38 303 312
Three-level system 8—18 20 106—107
Threshold 8—17 19
Ti-sapphire 276—282
Ti-sapphire, absorption spectrum 276—277
Ti-sapphire, configuration coordinate model 280—281
Ti-sapphire, energy level diagram 278
Ti-sapphire, fluorescence lifetime 276—277
Ti-sapphire, fluorescence spectrum 276—277
Ti-sapphire, Jahn — Teller effect 276 280—282
Ti-sapphire, R-lines 276—279
Ti-sapphire, radiationless decay rates 278—280
Transition rate, radiationless 130—134
Transition rate, radiationless, absorption transition rate 130—134
Transition rate, radiationless, emission transition rate 130—134
Transition rate, radiative 92—95
Transition rate, radiative, absorption transition rate 93—95
Transition rate, radiative, spontaneous emission rate 93—95
Transition rate, radiative, stimulated emission rate 93—95
Transition rate, vibronic 137—140
Transition rate, vibronic, absorption transition rate 139
Transition rate, vibronic, emission transition rate 139
Transition strength, radiative see "Oscillator strength" "f-number"
Trapping, exciton 196—202
Triangle rule 36 41 45
Tungstate 261
Two-photon absorption 110—111 114—115 329
Two-photon absorption, sequential two-photon absorption transition 111 114
Two-photon absorption, virtual two-photon absorption transition 111 114
Up-conversion 19 115 344—345 372—377 415
Vibronic lasers 260—270 276—282 287—290
Vibronic sideband 137—140 154—155 242—243 330
Waveguide lasers 414—415
Wigner coefficients 38
Wigner — Eckart theorem 57 303 316
x-parameter 315 324 341
XeF laser 413
YAG 319 320 329
YAG: Nd 299 302 307—308 319—336
YAG: Nd, absorption spectrum 320—321 324
YAG: Nd, atomic polarizability 328—329 342
YAG: Nd, concentration quenching 334—336
YAG: Nd, crystal field parameters 302 307—308
YAG: Nd, energy gap law 331—332
YAG: Nd, energy levels 299 323
YAG: Nd, energy transfer 333—336 345—346
YAG: Nd, excited state absorption 323 326—327
YAG: Nd, fluorescence lifetime 324
YAG: Nd, fluorescence spectrum 321—322 325 327—329
YAG: Nd, Judd — Ofelt parameters 324
Ðåêëàìà