Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Powell R. — Physics of Solid State Laser Materials (Atomic, Molecular and Optical Physics Series)
Powell R. — Physics of Solid State Laser Materials (Atomic, Molecular and Optical Physics Series)



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Physics of Solid State Laser Materials (Atomic, Molecular and Optical Physics Series)

Àâòîð: Powell R.

Àííîòàöèÿ:

This graduate-level text presents the fundamental physics of solid-state lasers, including the basis of laser action and the optical and electronic properties of laser materials. After an overview of the topic, the first part begins with a review of quantum mechanics and solid-state physics, spectroscopy, and crystal field theory; it then treats the quantum theory of radiation, the emission and absorption of radiation, and nonlinear optics; concluding with discussions of lattice vibrations and ion-ion interactions, and their effects on optical properties and laser action. The second part treats specific solid-state laser materials, the prototypical ruby and Nd-YAG systems being treated in greatest detail; and the book concludes with a discussion of novel and non-standard materials. Some knowledge of quantum mechanics and solid-state physics is assumed, but the discussion is as self-contained as possible, making this an excellent reference, as well as useful for independent study.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1998

Êîëè÷åñòâî ñòðàíèö: 437

Äîáàâëåíà â êàòàëîã: 22.12.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Group, class      51—54
Group, double-valued representation      55 62
Group, representation      51—54
Group, representations of lattice vibrations      123—127
Group, space      123 149—153
Group, subgroup      55—56
Group, theory selection rules      97—99
GSAG      261
GSGG      261—262
GSGG: Nd      341 345
GSGG: Nd, Cr-Nd energy transfer      345—347
Ham effect      174
Hamiltonian crystal field      58
Hamiltonian electric dipole interaction      90
Hamiltonian electric dipole-dipole      185
Hamiltonian electric quadrupole interaction      90 185
Hamiltonian electromagnetic field      85 87
Hamiltonian electron-phonon interaction      120—122 161—162 170
Hamiltonian energy transfer      184—186
Hamiltonian exchange interaction      184
Hamiltonian ion      32—33 43 49
Hamiltonian ion pairs      177 179
Hamiltonian ion-photon interaction      85 88—91
Hamiltonian lattice vibrations      117—120
Hamiltonian magnetic dipole interaction      90—91 186
Hamiltonian multielectron atom      33 170
Hamiltonian nonadiabatic      161—162
Hartree — Fock approximation      36
Homogeneous broadening      101—103 143
Hopping time      197 202
Host-sensitized energy transfer      182 347
Huang — Rhys factor      154 160 166 168—169 250 267 285
Hund's rules      42 67 217—296
Hypersensitive transition      318—319
Impurity-sensitized energy transfer      182
Inhomogeneous broadening      101 103—104 143 248—250 258—259 352
Ion pairs      175 177—182 245—250 258—259 276 285
Jahn — Teller effect      169—174 269 276 280—282 291
Judd — Ofelt theory      190 309—319
Judd — Ofelt theory, Einstein A coefficient      215
Judd — Ofelt theory, intensity parameters      313 324 341 352—353
Judd — Ofelt theory, linestrength parameters      314
Judd — Ofelt theory, reduced unitary matrix elements      313—314
Judd — Ofelt theory, selection rules      313
KDP      393
Kerr effect      109
Kerr lens mode-locking      109
KGW: Nd      350
Kramer's degeneracy      62 305
KTA      393
KTP      393
Lande factor      43
Lande interval rule      42
Laport rule      96
Laser-induced gratinng spectroscopy      211—213 258 347 365—371
Lattice vibrations      117—128
Lattice vibrations, accepting modes      165
Lattice vibrations, group theory representations      123—128
Lattice vibrations, kinetic energy      118 161—162
Lattice vibrations, local modes      117 123 154
Lattice vibrations, normal modes      122—128 149—154 160—165
Lattice vibrations, potential energy      118—119 161—163
Lattice vibrations, promoting modes      165
Lattice vibrations, self-energy      144
Lattice vibrations, symmetry coordinates      125—128
LBO      393
Lensing      23—25 109—110 113—114
Lensing, nonlinear lensing      23 109—110 113—114
Lensing, thermal lensing      23—25 109—110
LGS      261
LiCAF      261 265—269
Lifetime      4
Lifetime broadening      101 140 143
Lifetime, cavity lifetime      10 20
Lifetime, concentration quenching      176
Lifetime, fluorescence lifetime      7 207
Lifetime, radiative lifetime      4 100 105 188
Lifetime, radiative trapping      176
Ligand field theory      57
Lineshape, spectral      5 11 100—104 249
Lineshape, spectral, Gaussian lineshape      5 11 101 103—105 143
Lineshape, spectral, Lorentzian lineshape      5 11 100—103 143
Lineshape, spectral, Pekarian lineshape      169
Lineshape, spectral, Voigt lineshape      5 101 143
Lineshift, spectral      144—147 249 330—331
Lineshift, spectral, radiationless decay processes      147
Lineshift, spectral, Raman scattering of phonons      144—147
Lineshift, spectral, temperature dependence of the line position      147
Linewidth, spectral      140—144 155 248 276—279 330—331 363
Linewidth, spectral, collision broadening      103
Linewidth, spectral, Doppler broadening      103
Linewidth, spectral, homogeneous broadening      101 143
Linewidth, spectral, inhomogeneous broadening      101 143
Linewidth, spectral, lifetime broadening      101 140 143
Linewidth, spectral, natural linewidth      101 140
Linewidth, spectral, radiationless decay processes      143
Linewidth, spectral, Raman scattering of phonons      141—143
Linewidth, spectral, temperature dependence of the linewidth      143
LiSAF      261 265—269
LiSAF, absorption spectrum      266
LiSAF, crystal field      267—268
LiSAF, electron-phonon coupling      269
LiSAF, fluorescence lifetime      268—269
LiSAF, fluorescence spectrum      266
LiSAF, Huang — Rhys factor      267
LiSAF, Jahn — Teller effect      269
LiSAF, spin-orbit coupling      260
LiSGF      269
LLGG      261—262
Local modes of vibrations      117 123 154
Lorentz local field factor      100 108 310—311
losses      8 14—20
Losses, active      8
Losses, passive      8
LS coupling      41 97 315
Master equation      204—205 212
Material properties      23—30
Maxwell's equations      85
Mean-free-path      203 213
Minilasers      175
Mode-locking      22—23 109 411
Monte Carlo simulation      202
Multiphonon processes      102—107 160—169 359—363
Multiplet      41
Natural linewidth      101 140
Nephelauxetic effect      306
Nonadiabatic Hamiltonian      161—169
Nonlinear optical crystals      348 350 384—407
Nonlinear optical crystals, coherence length      389
Nonlinear optical crystals, harmonic generation      387—394
Nonlinear optical crystals, optical parametric generation      387 394—395
Nonlinear optical crystals, phase matching      388—394
Nonlinear optical crystals, stimulated Raman scattering      395—407
Nonlinear optical processes      107—115
Nonlinear refractive coefficient      109—110
Nonlinear refractive index      24—25 109—114 263
Normal modes of vibration      118—120 123—125 149—154
NPP      341 347—348
NPP, concentration quenching      347
NPP, energy transfer      347
Number operator, photon      87—88
NYAB      350
Optical damage      19 25 264—265
Orbach processes      132—137
Orbitals, electron      34—35 70—77
Oscillator strength      6—7 99—100 105
Output coupling      8 15—17
Partition function      181
Pauli exclusion principle      33 36 67 216 227 295
Pentafluoride      261
Perovskite      261
Phase matching      350
Photoconductivity      176
Point group      50—56
Polarizability      see "Atomic polarizability"
Population grating      212
Population inversion      8—9 20—21
Power      11—19
Pr lasers      376—377
principal quantum number      34
Promoting modes of vibration      165
Pulse width, spectral      5—6 11 23
Pulse width, temporal      20—23
Pump efficiency      12 19
Pumping schemes      19
Pumping schemes, avalanche pumping      19
Pumping schemes, energy transfer pumping      19 5.7
Pumping schemes, up-conversion pumping      19 115
Q-switching      20—22
Quantum defect      12
Quantum efficiency      7 106 250 285 333
Quenching parameter      348—350
Racah algebra      302
Racah parameters      47—48 81 219 222 224 232—233 240 261 308
Radiationless decay processes      127—137 162 168 250 278—280 331—332
Radiationless decay processes, direct transitions      130 143 147
Radiationless decay processes, multiphonon processes      132—137 162—169
Radiationless decay processes, selection rules      127 131
Raman laser      350 395—407
Raman scattering of phonons      132 135—137 141—143
Random walk      196—198
Rate equations      206—209 269 273
Reduced mass      32
Representation      51—55
Ruby      215 232—233 237—252 261
Ruby, absorption spectrum      239 262
Ruby, B-lines      241
Ruby, charge transfer bands      241
Ruby, configuration coordinate diagram      249—250
Ruby, crystal field strength      233 240
Ruby, energy levels      238
Ruby, energy transfer      251
Ruby, exchange coupled pairs      245—250
Ruby, excited state absorption      251
Ruby, fluorescence lifetime      242—245
Ruby, fluorescence spectrum      242 246 262
Ruby, Huang — Rhys factors      250
Ruby, N-lines      245—250
Ruby, photocurrent      252
Ruby, quantum efficiency      250
Ruby, R-lines      240 248—250
Ruby, Racah parameters      240
Ruby, radiationless relaxation rates      250
Ruby, S-lines      241
Ruby, stimulated emission cross section      252
Ruby, vibronic transitions      242—243
Russell — Saunders coupling      41 96 215 295
SAPpHiRe      237 276—282
Saturation fluence      18 264—265
Second harmonic generation      108 350
Selection rules, group theory      97—99
Selection rules, radiationless transitions      131
Selection rules, radiative transitions      95—96 98—99
Selection rules, vibronic      140 149—154 165
Self-doubling      109 350
Sensitizer ion      182
Site-selection spectroscopy      210 327—329 336 352 355—357
Six-j symbol      304
Slater determinant      43 72 231
Slater — Condon parameters      46—48 219 222 296—301
Slope efficiency      16 292
Space group      123 149—153
Spatial hole burning      411
Spectral hole burning      210—211
Spectral overlap integral      188
Spectroscopic notation      37 41
Spectroscopic notation, multiplet      41
Spectroscopic notation, multiplicity      41
Spectroscopic notation, spectroscopic term      41
Spectroscopic quality parameter      315 324 341
Spin-flip transition      67
Spin-orbit coupling      32—34 36 41—42 58 170 233—237 269 278 280 300—301 304
Spin-spin coupling      178—180
Spontaneous emission rate      93—95
Stark components      305
Stark effect      41 57
Stimulated emission rate      93—94
Stoichiometric laser materials      175 341 347
Stokes shift      157—159
Subgroup      55—56
Superexchange      181
susceptibility      107—108 111—113
Symmetry coordinates      125—128
Symmetry operation      49—51
Tanabe — Sugano diagrams      232 272—275
Tensor operators      301—319
Term      41
Thermal equilibrium      130 162 180—181
Thermal lensing      25 109—110 114
Thermal relaxation time      131 136—137
Three-j symbols      38 303 312
Three-level system      8—18 20 106—107
Threshold      8—17 19
Ti-sapphire      276—282
Ti-sapphire, absorption spectrum      276—277
Ti-sapphire, configuration coordinate model      280—281
Ti-sapphire, energy level diagram      278
Ti-sapphire, fluorescence lifetime      276—277
Ti-sapphire, fluorescence spectrum      276—277
Ti-sapphire, Jahn — Teller effect      276 280—282
Ti-sapphire, R-lines      276—279
Ti-sapphire, radiationless decay rates      278—280
Transition rate, radiationless      130—134
Transition rate, radiationless, absorption transition rate      130—134
Transition rate, radiationless, emission transition rate      130—134
Transition rate, radiative      92—95
Transition rate, radiative, absorption transition rate      93—95
Transition rate, radiative, spontaneous emission rate      93—95
Transition rate, radiative, stimulated emission rate      93—95
Transition rate, vibronic      137—140
Transition rate, vibronic, absorption transition rate      139
Transition rate, vibronic, emission transition rate      139
Transition strength, radiative      see "Oscillator strength" "f-number"
Trapping, exciton      196—202
Triangle rule      36 41 45
Tungstate      261
Two-photon absorption      110—111 114—115 329
Two-photon absorption, sequential two-photon absorption transition      111 114
Two-photon absorption, virtual two-photon absorption transition      111 114
Up-conversion      19 115 344—345 372—377 415
Vibronic lasers      260—270 276—282 287—290
Vibronic sideband      137—140 154—155 242—243 330
Waveguide lasers      414—415
Wigner coefficients      38
Wigner — Eckart theorem      57 303 316
x-parameter      315 324 341
XeF laser      413
YAG      319 320 329
YAG: Nd      299 302 307—308 319—336
YAG: Nd, absorption spectrum      320—321 324
YAG: Nd, atomic polarizability      328—329 342
YAG: Nd, concentration quenching      334—336
YAG: Nd, crystal field parameters      302 307—308
YAG: Nd, energy gap law      331—332
YAG: Nd, energy levels      299 323
YAG: Nd, energy transfer      333—336 345—346
YAG: Nd, excited state absorption      323 326—327
YAG: Nd, fluorescence lifetime      324
YAG: Nd, fluorescence spectrum      321—322 325 327—329
YAG: Nd, Judd — Ofelt parameters      324
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå