Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Powell R. — Physics of Solid State Laser Materials (Atomic, Molecular and Optical Physics Series)
Powell R. — Physics of Solid State Laser Materials (Atomic, Molecular and Optical Physics Series)



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Physics of Solid State Laser Materials (Atomic, Molecular and Optical Physics Series)

Àâòîð: Powell R.

Àííîòàöèÿ:

This graduate-level text presents the fundamental physics of solid-state lasers, including the basis of laser action and the optical and electronic properties of laser materials. After an overview of the topic, the first part begins with a review of quantum mechanics and solid-state physics, spectroscopy, and crystal field theory; it then treats the quantum theory of radiation, the emission and absorption of radiation, and nonlinear optics; concluding with discussions of lattice vibrations and ion-ion interactions, and their effects on optical properties and laser action. The second part treats specific solid-state laser materials, the prototypical ruby and Nd-YAG systems being treated in greatest detail; and the book concludes with a discussion of novel and non-standard materials. Some knowledge of quantum mechanics and solid-state physics is assumed, but the discussion is as self-contained as possible, making this an excellent reference, as well as useful for independent study.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1998

Êîëè÷åñòâî ñòðàíèö: 437

Äîáàâëåíà â êàòàëîã: 22.12.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
$Ba_{3}(VO_{4})_{2}$: Mn      285—287
$Ba_{3}(VO_{4})_{2}$: Mn, absorption spectrum      286
$Ba_{3}(VO_{4})_{2}$: Mn, fluorescence lifetime      287
$Ba_{3}(VO_{4})_{2}$: Mn, fluorescence spectrum      286
$Ba_{3}(VO_{4})_{2}$: Mn, stimulated emission cross section      287
$Ce^{3+}$      382
$CN^{-}$      407—408
$Co^{2+}$      273 287—288
$Cr^{2+}$      271—272 290—292
$Cr^{3+}$      215—270
$Cr^{3+}$, atomic polarizability      261 263
$Cr^{3+}$, crystal field strength      232 261
$Cr^{3+}$, exchange coupled pairs      245—251 258—259
$Cr^{3+}$, excited state absorption      261—263
$Cr^{3+}$, free ion terms      216—224
$Cr^{3+}$, octahedral crystal field terms      224—229
$Cr^{3+}$, optical damage      264—265
$Cr^{3+}$, quantum efficiency      263
$Cr^{3+}$, Racah parameters      226 261
$Cr^{3+}$, saturation fluence      264—265
$Cr^{3+}$, selection rules      233—237
$Cr^{3+}$, spin-orbit splitting      233—237
$Cr^{3+}$, strong field material      233 237—253
$Cr^{3+}$, Tanabe — Sugano diagram      232
$Cr^{3+}$, weak field materials      233 254—270
$Cr^{4+}$      271 282—285
$Dy^{2+}$      382
$Er^{3+}$ lasers      340 372—377
$Fe^{2+}$      289—290
$F^{2+}$      408—411
$Ho^{3+}$ lasers      340 364—371 376
$Ho^{3+}$ lasers, Cr-sensitized      364
$Ho^{3+}$ lasers, rate equation model      369—371
$Ho^{3+}$ lasers, Tm-sensitized      364—368
$KLiYF_{5}$: Nd      343—344
$LaF_{3}$: Nd      341—342 344 376
$LiNbO_{3}$: Nd      350
$MgF_{2}: Co^{2+}$      287—288
$MgF_{2}: Co^{2+}$, absorption spectrum      287—288
$MgF_{2}: Co^{2+}$, excited state absorption      287
$MgF_{2}: Co^{2+}$, fluorescence lifetime      287—288
$MgF_{2}: Co^{2+}$, fluorescence spectrum      287—288
$MgF_{2}: Ni^{2+}$      289—290
$MgF_{2}: Ni^{2+}$, absorption spectrum      290
$MgF_{2}: Ni^{2+}$, fluorescence lifetime      290
$MgF_{2}: Ni^{2+}$, fluorescence spectrum      290
$MgF_{2}: V^{2+}$      289
$Mn^{5+}$      272 282 286
$Nd^{3+}$      294—360 341—345
$Nd^{3+}$, concentration      348—350
$Nd^{3+}$, configuration mixing      309—319
$Nd^{3+}$, electron-phonon interaction      317
$Nd^{3+}$, energy level diagram      299 340
$Nd^{3+}$, free ion terms      295—299
$Nd^{3+}$, glass hosts      349—353
$Nd^{3+}$, hypersensitive transitions      318
$Nd^{3+}$, multiphonon decay      359—363
$Nd^{3+}$, R-parameter      341
$Nd^{3+}$, Racah parameters      298
$Nd^{3+}$, reduced unitary matrix elements      314
$Nd^{3+}$, Slater parameters      296—301
$Nd^{3+}$, spin-orbit coupling      300—301
$Nd^{3+}$, x-parameter      341
$Ni^{2+}$      275 289—290
$Rh^{2+}$      414
$Sm^{2+}$      382—383
$SrTiO_{3}: Cr^{3+}$      147—156
$SrTiO_{3}: Cr^{3+}$, fluorescence spectrum      148
$SrTiO_{3}: Cr^{3+}$, normal modes of vibration      149—153
$SrTiO_{3}: Cr^{3+}$, vibronic selection rules      149—153
$SrTiO_{3}: Cr^{3+}$, vibronic spectrum      153—155
$SrTiO_{3}: Cr^{3+}$, zero-phonon linewidth      145—156
$Ti^{3+}$      271—272 276—282
$Tl^{0}$      410
$Tm^{2+}$      382
$Tm^{3+}$      340 365—368 371—372 376
$Tm^{3+}$, energy migration      365—368
$Tm^{3+}$, laser      340 371—372 376
$U^{3+}$      382—384
$V^{2+}$      272 282 288—289
$YAG: Cr^{4+}$      282—286
$YAG: Cr^{4+}$, absorption spectrum      284—285
$YAG: Cr^{4+}$, crystal field strength      285
$YAG: Cr^{4+}$, energy levels      283
$YAG: Cr^{4+}$, excited-state absorption      285
$YAG: Cr^{4+}$, fluorescence lifetime      285
$YAG: Cr^{4+}$, fluorescence spectrum      284—285
$YAG: Cr^{4+}$, nonradiative decay rates      285
$YAG: Cr^{4+}$, quantum efficiency      285
$YAG: Cr^{4+}$, stimulated emission cross section      285
$Yb_{3+}$ lasers      372—375
$YVO_{4}$: Nd      341—342 347—348
$YVO_{4}$: Nd, host sensitized energy transfer      347—348
$Y_{3}(Al_{1-x}Ga_{x})_{5}O_{12}$: Nd      328—329
$ZnSe: Cr^{2+}$      290—292
$ZnSe: Cr^{2+}$, absorption spectrum      291
$ZnSe: Cr^{2+}$, fluorescence lifetime      291
$ZnSe: Cr^{2+}$, fluorescence spectrum      291
$ZnSe: Cr^{2+}$, Jahn — Teller effect      291
$ZnSe: Cr^{2+}$, slope efficiency      291
Absorption, coefficient      5 104
Absorption, cross section      6 104 108 113—115
Absorption, excited state      24 26 111 115
Absorption, photon      3—7 25—26 93—94 104
Absorption, transition probability      4
Absorption, transition rate      4 93—94
Absorption, two-photon      110—115
Accepting modes of vibration      165
Acceptor ion      182
Activation energy      157—159 195 203
Activator ion      182
Active ion distribution      29—30 175—177 181—182 191—192 196 205 259 276 285 343—344 352
ADP      393
Alexandrite      254—261
Alexandrite, absorption spectrum      255—257 262
Alexandrite, energy levels      256
Alexandrite, energy transfer      258—260
Alexandrite, exchange coupled pairs      258—259
Alexandrite, fluorescence lifetime      256—258
Alexandrite, fluorescence spectrum      256—259 262
Alexandrite, N-lines      258—259
Alexandrite, quantum efficiency      260
Alexandrite, R-lines      256
Alexandrite, site occupancy      255
Alexandrite, stimulated emission cross section      260
Alexandrite, vibronic laser      260
Allowed transition      94—98
Amplification      7
Angular momentum, coupling      37—49 177—182
Angular momentum, electron      33—49 171
Angular momentum, LS coupling      37—42 96—98
Angular momentum, Quantum number      34—38
Angular momentum, raising and lowering operators      35
Angular momentum, Russell — Saunders coupling      37—42 96—98
Annihilation operator, phonon      120—122
Annihilation operator, photon      87—88
Antiferromagnetic coupling      179—182
Atomic polarizability      108 113 261 263—267 328—329 329 342 352
Avalanche absorption      344
Back transfer      204
Banana      393
Basis      53
BBO      393
Beer — Lambert law      5 104
BEL: Nd      341
Bohr magneton      42
Boltzmann distribution      131 159 162 165 180—181
Borate      261
Born approximation      201
Born — Oppenheimer approximation      160 169—174
Bose — Einstein distribution function      130
Branching ratio      315 325 341—342 353
Branching ratio, R-parameter      341
Branching ratio, x-parameter      341
Cavity dumping      22
Cavity quality factor      20
CHARACTER      52—54
Chromium      215—271 282—285 290—292
Chrysoberyl      255
class      51—53
Clausius — Mossatti relationship      108
Clebsch — Gordan coefficients      38—41 56—57 72—75 227—229 303
Coherence factor      194
Collision broadening      103
Color center lasers      407—411
Colquiriite      265
Concentration quenching      176 202—203 245 334 336 347—350 355—357
Condon approximation      60—62
Configuration mixing      240 310—319
Configurational coordinate diagram      157—160 249 250 280—281
Corundum      237
Coulomb gauge      85 88
Coulomb integral      46—48 81 219 230—231
Coulomb interaction      32—33 36 41 177
Creation operator, phonon      120—122
Creation operator, photon      87—88
Critical concentration      189
Critical interaction distance      189
Crystal field strength      58—59 77—80 121—122 159 160 232 261 267—268 271—275 285 301—309
Crystal field strength, operator equivalents      302 306—309
Crystal field strength, Racah algebra      302
Crystal field strength, tensor operators      301
Crystal field theory      57—59
Crystal growth      27—28 343—344
Debye model      130 135—136 142 146—147 194
Density of states, phonon      129—130 142
Density of states, phonon, Debye cutoff frequency      130 142 147
Density of states, phonon, Debye temperature      142—147 156
Density of states, photon      93—94
Diagonal sum rule      44
Dieke diagram      340
Diffusion model      199—203
Diffusion model, diffusion coefficient      199 202—203 213
Diffusion model, diffusion length      199 213
Diffusion model, mean-free-path      203 213
Dipole moment operator      95
Direct transitions      127—132 143 147
Donor ion      182
Doppler broadening      103
Dye lasers      411—412
ED-2: Nd      351—353
Effective Bohr radius      190
Effective cross section      19—20
Effective phonon mode      134
Efficiency      7 12 14—16 18
Efficiency, pump efficiency      12 19
Efficiency, quantum efficiency      7 106
Efficiency, slope efficiency      16
Einstein coefficients      94 100 104—105 188 315
Electromagnetic multipole-multipole interaction      184—185
Electron configuration      66—69
Electron-phonon coupling      121—122 127 154 156—160 169—170 269 363
Electron-phonon coupling, anharmonic electron-phonon coupling      156-157
Electron-phonon coupling, strong electron-phonon coupling      156—174
Electron-phonon coupling, weak electron-phonon coupling      127—147
Electron-phonon interaction      121—122 158—160 169—171
Emerald      261—262
Emission, photon      4 11
Emission, photon, effective cross section      19—20
Emission, photon, emission cross section      6 19—20 104—105
Emission, photon, emission intensity      105—107
Emission, photon, emission lifetime      see "Lifetime"
Emission, photon, emission transition probability      7 315
Emission, photon, fluorescence emission      105
Emission, photon, spontaneous emission      4 7 26
Emission, photon, spontaneous emission rate      93—95
Emission, photon, stimulated emission      6 19—20
Emission, photon, stimulated emission rate      13 93—94 103—105
Energy gap law      134 168 195 331—332 359—363
Energy migration      176—177
Energy migration, diffusion theory      198—203
Energy migration, hopping model      196—198
Energy migration, Kenkre model      365—368
Energy migration, Monte Carlo simulation      202
Energy migration, random walk      196—198
Energy transfer      25 175 333—336 345—348 364—371
Energy transfer rate      188—192
Energy transfer rate, diffusion limited energy transfer rate      201
Energy transfer rate, diffusion model      199—200
Energy transfer rate, electric dipole-dipole interaction      188—191
Energy transfer rate, electric dipole-quadrupole interaction      189
Energy transfer rate, electric quadrupole-quadrupole interaction      189
Energy transfer rate, exchange interaction      189—190
Energy transfer rate, multistep random walk      196—199
Energy transfer rate, phenomenological energy transfer rate parameter      206—209
Energy transfer rate, phonon-assisted energy transfer      192—195
Energy transfer rate, trap limited energy transfer rate      201
Energy transfer, coherent energy transfer      203 213
Energy transfer, phonon-assisted energy transfer      192—195
Energy transfer, radiative energy transfer      175 5.31
Energy transfer, resonant energy transfer      182—192
Energy transfer, strong coupling      175
Energy transfer, weak coupling      175
Energy, pulse      21
Exchange integral      46—48 81 219 230—231
exchange interaction      175 177—182 184 189—190 245—250
Excited state absorption (ESA)      111 115 251 261 263 285 287 289 323 326—327 343 357
Exciton      176—177
Exciton, diffusion      199—203 212—213
Exciton, Frenkel      176
Exciton, localized      196
Exciton, mean-free-path      203 212
Exciton, migration      196—213
Exciton, random walk      196—198
Exciton, self-trapped      203
Exciton, trapping      196
Exciton, Wannier      177
f-number      6 99—100 105
FAP: Nd      341
Fermi — Dirac statistics      33
Fermi's golden rule      92—93 129 162 183
Ferromagnetic coupling      179—181
Fiber lasers      414—415
Findley — Clay analysis      15—16
Fluorescence emission      105—107 207—209
Fluorescence linenarrowing      210—211 354—357
Foerster — Dexter energy transfer process      183
Forbidden transition      96—98
Forced electric dipole transition      235 309—319
Forsterite      282
Four-level system      8—17 18
Frank — Condon overlap      157—158 165 250
Gain      8 14—16
Gain, cavity roundtrip gain      8
Gain, saturated gain      13
Gain, small signal gain      8 13—17
GFG      261 269—270
GGG      261—262
GGG: Nd      341
Glass: Nd      349—353
Glass: Nd, branching ratios      353—354
Glass: Nd, effective linewidth      353
Glass: Nd, emission cross section      353
Glass: Nd, fluorescence linenarrowing      354—357
Glass: Nd, Judd — Ofelt parameters      353
Glass: Nd, radiative lifetime      353
Group      51
Group of the wavevector      149
Group, basis      53
Group, character      52—54
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå