Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Powell R. — Physics of Solid State Laser Materials (Atomic, Molecular and Optical Physics Series)
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Physics of Solid State Laser Materials (Atomic, Molecular and Optical Physics Series)
Àâòîð: Powell R.
Àííîòàöèÿ: This graduate-level text presents the fundamental physics of solid-state lasers, including the basis of laser action and the optical and electronic properties of laser materials. After an overview of the topic, the first part begins with a review of quantum mechanics and solid-state physics, spectroscopy, and crystal field theory; it then treats the quantum theory of radiation, the emission and absorption of radiation, and nonlinear optics; concluding with discussions of lattice vibrations and ion-ion interactions, and their effects on optical properties and laser action. The second part treats specific solid-state laser materials, the prototypical ruby and Nd-YAG systems being treated in greatest detail; and the book concludes with a discussion of novel and non-standard materials. Some knowledge of quantum mechanics and solid-state physics is assumed, but the discussion is as self-contained as possible, making this an excellent reference, as well as useful for independent study.
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1998
Êîëè÷åñòâî ñòðàíèö: 437
Äîáàâëåíà â êàòàëîã: 22.12.2014
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
: Mn 285—287
: Mn, absorption spectrum 286
: Mn, fluorescence lifetime 287
: Mn, fluorescence spectrum 286
: Mn, stimulated emission cross section 287
382
407—408
273 287—288
271—272 290—292
215—270
, atomic polarizability 261 263
, crystal field strength 232 261
, exchange coupled pairs 245—251 258—259
, excited state absorption 261—263
, free ion terms 216—224
, octahedral crystal field terms 224—229
, optical damage 264—265
, quantum efficiency 263
, Racah parameters 226 261
, saturation fluence 264—265
, selection rules 233—237
, spin-orbit splitting 233—237
, strong field material 233 237—253
, Tanabe — Sugano diagram 232
, weak field materials 233 254—270
271 282—285
382
lasers 340 372—377
289—290
408—411
lasers 340 364—371 376
lasers, Cr-sensitized 364
lasers, rate equation model 369—371
lasers, Tm-sensitized 364—368
: Nd 343—344
: Nd 341—342 344 376
: Nd 350
287—288
, absorption spectrum 287—288
, excited state absorption 287
, fluorescence lifetime 287—288
, fluorescence spectrum 287—288
289—290
, absorption spectrum 290
, fluorescence lifetime 290
, fluorescence spectrum 290
289
272 282 286
294—360 341—345
, concentration 348—350
, configuration mixing 309—319
, electron-phonon interaction 317
, energy level diagram 299 340
, free ion terms 295—299
, glass hosts 349—353
, hypersensitive transitions 318
, multiphonon decay 359—363
, R-parameter 341
, Racah parameters 298
, reduced unitary matrix elements 314
, Slater parameters 296—301
, spin-orbit coupling 300—301
, x-parameter 341
275 289—290
414
382—383
147—156
, fluorescence spectrum 148
, normal modes of vibration 149—153
, vibronic selection rules 149—153
, vibronic spectrum 153—155
, zero-phonon linewidth 145—156
271—272 276—282
410
382
340 365—368 371—372 376
, energy migration 365—368
, laser 340 371—372 376
382—384
272 282 288—289
282—286
, absorption spectrum 284—285
, crystal field strength 285
, energy levels 283
, excited-state absorption 285
, fluorescence lifetime 285
, fluorescence spectrum 284—285
, nonradiative decay rates 285
, quantum efficiency 285
, stimulated emission cross section 285
lasers 372—375
: Nd 341—342 347—348
: Nd, host sensitized energy transfer 347—348
: Nd 328—329
290—292
, absorption spectrum 291
, fluorescence lifetime 291
, fluorescence spectrum 291
, Jahn — Teller effect 291
, slope efficiency 291
Absorption, coefficient 5 104
Absorption, cross section 6 104 108 113—115
Absorption, excited state 24 26 111 115
Absorption, photon 3—7 25—26 93—94 104
Absorption, transition probability 4
Absorption, transition rate 4 93—94
Absorption, two-photon 110—115
Accepting modes of vibration 165
Acceptor ion 182
Activation energy 157—159 195 203
Activator ion 182
Active ion distribution 29—30 175—177 181—182 191—192 196 205 259 276 285 343—344 352
ADP 393
Alexandrite 254—261
Alexandrite, absorption spectrum 255—257 262
Alexandrite, energy levels 256
Alexandrite, energy transfer 258—260
Alexandrite, exchange coupled pairs 258—259
Alexandrite, fluorescence lifetime 256—258
Alexandrite, fluorescence spectrum 256—259 262
Alexandrite, N-lines 258—259
Alexandrite, quantum efficiency 260
Alexandrite, R-lines 256
Alexandrite, site occupancy 255
Alexandrite, stimulated emission cross section 260
Alexandrite, vibronic laser 260
Allowed transition 94—98
Amplification 7
Angular momentum, coupling 37—49 177—182
Angular momentum, electron 33—49 171
Angular momentum, LS coupling 37—42 96—98
Angular momentum, Quantum number 34—38
Angular momentum, raising and lowering operators 35
Angular momentum, Russell — Saunders coupling 37—42 96—98
Annihilation operator, phonon 120—122
Annihilation operator, photon 87—88
Antiferromagnetic coupling 179—182
Atomic polarizability 108 113 261 263—267 328—329 329 342 352
Avalanche absorption 344
Back transfer 204
Banana 393
Basis 53
BBO 393
Beer — Lambert law 5 104
BEL: Nd 341
Bohr magneton 42
Boltzmann distribution 131 159 162 165 180—181
Borate 261
Born approximation 201
Born — Oppenheimer approximation 160 169—174
Bose — Einstein distribution function 130
Branching ratio 315 325 341—342 353
Branching ratio, R-parameter 341
Branching ratio, x-parameter 341
Cavity dumping 22
Cavity quality factor 20
CHARACTER 52—54
Chromium 215—271 282—285 290—292
Chrysoberyl 255
class 51—53
Clausius — Mossatti relationship 108
Clebsch — Gordan coefficients 38—41 56—57 72—75 227—229 303
Coherence factor 194
Collision broadening 103
Color center lasers 407—411
Colquiriite 265
Concentration quenching 176 202—203 245 334 336 347—350 355—357
Condon approximation 60—62
Configuration mixing 240 310—319
Configurational coordinate diagram 157—160 249 250 280—281
Corundum 237
Coulomb gauge 85 88
Coulomb integral 46—48 81 219 230—231
Coulomb interaction 32—33 36 41 177
Creation operator, phonon 120—122
Creation operator, photon 87—88
Critical concentration 189
Critical interaction distance 189
Crystal field strength 58—59 77—80 121—122 159 160 232 261 267—268 271—275 285 301—309
Crystal field strength, operator equivalents 302 306—309
Crystal field strength, Racah algebra 302
Crystal field strength, tensor operators 301
Crystal field theory 57—59
Crystal growth 27—28 343—344
Debye model 130 135—136 142 146—147 194
Density of states, phonon 129—130 142
Density of states, phonon, Debye cutoff frequency 130 142 147
Density of states, phonon, Debye temperature 142—147 156
Density of states, photon 93—94
Diagonal sum rule 44
Dieke diagram 340
Diffusion model 199—203
Diffusion model, diffusion coefficient 199 202—203 213
Diffusion model, diffusion length 199 213
Diffusion model, mean-free-path 203 213
Dipole moment operator 95
Direct transitions 127—132 143 147
Donor ion 182
Doppler broadening 103
Dye lasers 411—412
ED-2: Nd 351—353
Effective Bohr radius 190
Effective cross section 19—20
Effective phonon mode 134
Efficiency 7 12 14—16 18
Efficiency, pump efficiency 12 19
Efficiency, quantum efficiency 7 106
Efficiency, slope efficiency 16
Einstein coefficients 94 100 104—105 188 315
Electromagnetic multipole-multipole interaction 184—185
Electron configuration 66—69
Electron-phonon coupling 121—122 127 154 156—160 169—170 269 363
Electron-phonon coupling, anharmonic electron-phonon coupling 156-157
Electron-phonon coupling, strong electron-phonon coupling 156—174
Electron-phonon coupling, weak electron-phonon coupling 127—147
Electron-phonon interaction 121—122 158—160 169—171
Emerald 261—262
Emission, photon 4 11
Emission, photon, effective cross section 19—20
Emission, photon, emission cross section 6 19—20 104—105
Emission, photon, emission intensity 105—107
Emission, photon, emission lifetime see "Lifetime"
Emission, photon, emission transition probability 7 315
Emission, photon, fluorescence emission 105
Emission, photon, spontaneous emission 4 7 26
Emission, photon, spontaneous emission rate 93—95
Emission, photon, stimulated emission 6 19—20
Emission, photon, stimulated emission rate 13 93—94 103—105
Energy gap law 134 168 195 331—332 359—363
Energy migration 176—177
Energy migration, diffusion theory 198—203
Energy migration, hopping model 196—198
Energy migration, Kenkre model 365—368
Energy migration, Monte Carlo simulation 202
Energy migration, random walk 196—198
Energy transfer 25 175 333—336 345—348 364—371
Energy transfer rate 188—192
Energy transfer rate, diffusion limited energy transfer rate 201
Energy transfer rate, diffusion model 199—200
Energy transfer rate, electric dipole-dipole interaction 188—191
Energy transfer rate, electric dipole-quadrupole interaction 189
Energy transfer rate, electric quadrupole-quadrupole interaction 189
Energy transfer rate, exchange interaction 189—190
Energy transfer rate, multistep random walk 196—199
Energy transfer rate, phenomenological energy transfer rate parameter 206—209
Energy transfer rate, phonon-assisted energy transfer 192—195
Energy transfer rate, trap limited energy transfer rate 201
Energy transfer, coherent energy transfer 203 213
Energy transfer, phonon-assisted energy transfer 192—195
Energy transfer, radiative energy transfer 175 5.31
Energy transfer, resonant energy transfer 182—192
Energy transfer, strong coupling 175
Energy transfer, weak coupling 175
Energy, pulse 21
Exchange integral 46—48 81 219 230—231
exchange interaction 175 177—182 184 189—190 245—250
Excited state absorption (ESA) 111 115 251 261 263 285 287 289 323 326—327 343 357
Exciton 176—177
Exciton, diffusion 199—203 212—213
Exciton, Frenkel 176
Exciton, localized 196
Exciton, mean-free-path 203 212
Exciton, migration 196—213
Exciton, random walk 196—198
Exciton, self-trapped 203
Exciton, trapping 196
Exciton, Wannier 177
f-number 6 99—100 105
FAP: Nd 341
Fermi — Dirac statistics 33
Fermi's golden rule 92—93 129 162 183
Ferromagnetic coupling 179—181
Fiber lasers 414—415
Findley — Clay analysis 15—16
Fluorescence emission 105—107 207—209
Fluorescence linenarrowing 210—211 354—357
Foerster — Dexter energy transfer process 183
Forbidden transition 96—98
Forced electric dipole transition 235 309—319
Forsterite 282
Four-level system 8—17 18
Frank — Condon overlap 157—158 165 250
Gain 8 14—16
Gain, cavity roundtrip gain 8
Gain, saturated gain 13
Gain, small signal gain 8 13—17
GFG 261 269—270
GGG 261—262
GGG: Nd 341
Glass: Nd 349—353
Glass: Nd, branching ratios 353—354
Glass: Nd, effective linewidth 353
Glass: Nd, emission cross section 353
Glass: Nd, fluorescence linenarrowing 354—357
Glass: Nd, Judd — Ofelt parameters 353
Glass: Nd, radiative lifetime 353
Group 51
Group of the wavevector 149
Group, basis 53
Group, character 52—54
Ðåêëàìà