Авторизация
Поиск по указателям
Serra J. — Image Analysis and Mathematical Morphology
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Image Analysis and Mathematical Morphology
Автор: Serra J.
Аннотация: Mathematical morphology was born in 1964 when G. Matheron was asked to investigate the relationships between the geometry of porous media and their permeabilities, and when at the same time, I was asked to quantify the petrography of iron ores, in order to predict their milling properties. This initial period (1964-1968) has resulted in a first body of theoretical notions (Hit or Miss transformations, openings and closings, Boolean models), and also in the first prototype of the texture analyser. It was also the time of the creation of the Centre de Morphologie Mathematique on the campus of the Paris School of Mines at Fontainebleau (France). Above all, the new group had found its own style, made of a symbiosis between theoretical research, applications and design of devices.
These have the following idea in common: the notion of a geometrical structure, or texture, is not purely objective. It does not exist in the phenomenon itself, nor in the observer, but somewhere in between the two. Mathematical morphology quantifies this intuition by introducing the concept of structuring elements. Chosen by the morphologist, they interact with the object under study, modifying its shape and reducing it to a sort of caricature which is more expressive than the actual initial phenomenon. The power of the approach, but also its difficulty, lies in this structural sorting. Indeed, the need for a general theory for the rules of deformations appeared soon. The method progressed as a result of an interchange between intellectual intuitions and practical demands coming from the applications. This finally lead to the content of this book. On the way, several researchers joined the initial team and constituted what is now called the "Fontainebleau School". Among them, we can quote J.C. Klein, P. Delfiner, H. Digabel, M. Gauthier, D. Jeulin, E. Kolomenski, Y. Sylvestre, Ch. Lantuejoul, F. Meyer and S. Beucher.
A new theory never appears by spontaneous generation. It starts from some initial knowledge and grows in a certain context. The family tree of mathematical morphology essentially comprises the two branches of integral geometry and geometrical probabilities, plus a few collateral ancestors (harmonic analysis, stochastic processes, algebraic topology). Apart from mathematical morphology, three other parallel branches may be considered as current descendants of the same tree. They are stereology, point processes and stochastic geometry as developed by D. G. Kendall's School at Cambridge. Stereology, unlike the other two, is oriented towards applications. The stereologists have succeeded in putting the major theorems of integral geometry into practice. Indeed their society regroups biologists and specialists of the material sciences whose mutual interest lies in the quantitative description of structures, principally at the microscopic scale.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1982
Количество страниц: 620
Добавлена в каталог: 25.11.2014
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Accumulation point 68
Adherent point 71
Algorithm 20—24
Alignments of points 541—543
Alternating capacity 548
Anamorphoses 435
Angular measures 119
Angularity 140 144 385
Angularity and size distribution 330 362—364
Anisotropy 271 283—286 301—304
Anisotropy, fast characterization 226
Antiextensivity see also "Extensivity" 254 270 319
Area digital 35
Area digitalization 220
Area Euclidean 104
Area weighted representation 210
Asymptote for fractal sets 150
Asymptote for the covariance 282
Automorphism 167
Average 254—262
Average infinite 263
Balls 262
Balls Boolean 499
Balls, covariance of 310
Balls, size distribution 350—352
Balls, volume of 124
Basis digital 168 175
Basis topological 67
Bezout's identity 168
Bias 245 248
Boole — Poisson model 565—566
Boolean disks 482 553
Boolean disks, pore size distributions 361
Boolean functions 469
Boolean sets 485—502 581
Boolean sets in one dimension 555
Borel sets 114
Boundary 13 69 142 151
Boundary digital 183 198 200 392
Boundary, genus of 135 199
Bounded set 219 236 244
Brownian motion trajectories 543—544
C-additivity 109 548 550
C-additivity and sup-additivity 465
Cauchy formula 104 137
Cauwe's model 28 520—524 577—579
Cells with nuclei, estimation 255
Change of scale (principle) and convexity 96—98
Change of scale (principle) and size distributions 334 357—358
Change of scale (principle) compatibility under 9 151
Change of scale (principle), digital 202
Channel 447 456
Choquet's theorem 242 548 565
Chord see "Linear size distribution"
Circularity factor 336—339
Clay soils, case study 506—508
Clay, case study 153—158
Closed set, topological 66
Closing algebraic 56
Closing and convex hull 98—100
Closing for function 433 444
Closing morphological 50—56 270 589
Closing pseudo 418
Closing scaling table 366
Closing, size distribution 336
Closing, topological properties 86
Clustered point model 535—537 543—544
Clusters 271 300 308
Coke, case study 499—502
Compact sets 73
Compactness 358
Compactness, locally compact space 71
Complementation 270 430
Complementation duality, w.r.t. 43 51 391 588—589
Conditional bisector 383—385
Conditional operations 393—394
Connected component 182
Connected component simply 182 193
Connected component, extraction 41 401—405
Connectivity see also "Connected component" 88—89 433
Connectivity digital 182 198
Connectivity number 133—136 138 143
Connectivity number for Boolean model 211 492—494 557
Connectivity number for functions 467
Connectivity number, digitalization 220
Connectivity number, euclidean convex sets 104
Connectivity number, regular model 145—146 160
Consecutive points 171
Continuity 69
Continuity for the Hit or Miss topology 76 86
Continuity in regular model 146
Continuity of the skiz 387
Continuity, continuous functionals 109
contour 184
Contrast descriptors see "Segmentation"
Convergence see also "Continuity monotonic sequential" 14 70 77 81 88 214—215 426
Convex hull 98
Convex hull and skeleton 380
Convex hull, digital 42 171 416—418
Convex hull, digitalization 218 392
Convex polyhedra 108
Convex ring 133 193
Convex ring for functions 464-466
Convex ring, extension of 140—141 235
Convex ring, topology on 73
Convex sets and ordering relations 126
Convex sets and symmetry 126
Convex sets digital 171
Convex sets, average sections 264
Convex sets, digitalization 218
Convex sets, isotropic and digital 177 188
Convex sets, primary grains 489—491
Convex sets, random 548
Convex sets, size distribution 346—350
Convexity for functions 464—466 472
Convexity numbers 140—143 159
Convexity numbers in 204
Convexity numbers, digitalization 372
Convolution product 280 435
Conway's game 270 421
Correspondence analysis 342
Coulter counting 318
Counting logics see also "Connectivity number" 201 204
Counts of overlapping particles 581
Covariance exponential 314
Covariance for Boolean sets 487
Covariance isotropic 313
Covariance measure 532 571
Covariance rectangular 276 312 314
Covariance, Poisson polyhedra 514
Covariance, Poisson slices 572
Covariogram 273
Covering representation 209 220 402
criteria 20—24
Crofton formula 104 137
Crofton formula digital 193 194
Crofton formula for thick sections 105
Crofton formula, digitalization 221
cube 48
Cube-octahedron 206 443
Cubic grid 196 204 557
Curvature 125 219 388
Curvature mean 160 265
Curvature, distribution of radii of 370—372
Curvature, regular model 146 224
Cytology, case studies 22—23 403—404 410—415 462—463
Dead leaves model 508—511
Defect lines 409—411
Definition field 237 245
Deterministic approach 236 272
Differences, function 434 436—437 444 472—473
Differences, set 376 389 390 407 416 449—450
Digital polygons 204
Digitalization 65 212 399 434
Digitalization for functions 449
Digitalization of the skeleton 387
Dilation 43—49 270 589
Dilation and convexity 96 102 172
Dilation functions 431 441 471 477
Dilation hexagonal 192 193
Dilation skeleton 377
Dilation, Steiner formula for 111
Dilation, topological properties 85—88 91
Dilution model 315
Dirac measure 115 437
Discrete Boolean model 554
disks see also "Balls"
Disks, intercepts of 224
Disks, maximum 375
Disks, size distributions 350
Displacements 270
Displacements digital 169
Displacements, invariance under 109
Distance see also "Metric"
Distance, pseudo distance 90 190
divides 446—447 456 589
Dodecagon 203
Dodecagon opening 364
Dodecagon perimeter 423
Dodecagon, convex hull 418
Dodecagon, dodecagonal grid 174
Doublets of points 538
Downstream 382
Duality w.r.t. complementation 588—589
EDGE 173 191
Edge corrections 233 409
Eight-connected graphs 182 184 201
Electron microscopy, case study 458—460
Embryonic ovary, case study 253 296—300
end points 392
Enhancement 476
Ergodicity 236 578
Erosion 39 43—49 62 248—249 270 589
Erosion for functions 431 441—444 471 477
Erosion linear 323—325
Erosion vhexagonal 192
Erosion, convexity 96 172
Erosion, parametrization using 381
Erosion, skeleton 377
Erosion, Steiner formula for 112
Erosion, topological properties 85—88 91
Estimator 242
Estimator of the covariance parameters 280—283
Estimator, asymptotically unbiased 245
Euler relation 185 210 229
Euler — Poincare constant see "Connectivity number"
Extensivity 52 270
Extensivity, lack of 421
Falsifying experiments 577
Ferret's diameter 392
Filtering 474—476
Forest structure, case studies 483 538—539
Fourier transform 273 434
Fractal sets 147 152 311 543—544 550
Fractal sets, digitalization 215 421
Fractures in steel, case study 458—461
Fuzzy sets 425
Generating function 534
Geological case studies, calcite migration 290—294
Geological case studies, faults orientation 285
Geological case studies, sedimentary layer structure 304—307
Germ models 552
Global parameters 127
Global parameters, approach 232 409
Global parameters, covariance 272
Golay alphabet 392
Gradients 437—441 457—461 467
graphs see also "Square Hexagonal Eight-connected"
Graphs digital 179 185 201
Graphs in 197
Grey tone function 426 589
Grids 172—174
Grids in 196
Grids, invariance 176
Hadwiger's theorem 109 550
Hard core point model 540—541
Heuristics 579—583
Hexagonal graphs 181
Hexagonal grid 174 348
Hexagonal lattice 208
Hexagonal prism 48
Hexagonal stereology 191—195
Hexagonal thinnings 392—403
Hierarchical models 561—563
Hills 447 456 589
Hit or Miss topology 75—85 429
Hit or Miss transformation 39 270 390
Hit or Miss transformation for functions 450
Hit or Miss transformation, topological properties 85—88
hole 183 185
Hole effect 290 313
Homeomorphism 69
Homogeneity 109 128 549
Homothetics see "Change of scale"
Homotopy see also "Thinning" 270 589
Homotopy digital 187 198 203 420
Homotopy for functions 445—449
Homotopy for regular model 144
Homotopy, digitalization 216 419
Homotopy, homotopic transformations 89
Human perception 586
Hyperplanes digital 168
Hyperplanes, parallel 170
Idempotence 52 270 321 394 588
Increasing transformations 13 48 52 55 270 319
Increasing transformations, digitability 214
Increasing transformations, functionals 109
Indicator function 128 272—275 425 486
Individual approach 232 407
Individual, estimation of 245 247 249 257—261 264
Individual, number of 254 260
Individual, size distribution 344—346 367 368
Induced grains see "Stereology"
inf 430 431 433 436 443 450 452 471 477 589
Infinite divisibility 484 549
Integral geometry 102 255 550
Intercepts see also "Linear size distribution"
Intercepts digital 171
Intercepts of a disk 224
Intercepts, number of 35 284
Interior 68
Interior, empty interior 109
Isolated point 68 392
Isolated primary grains 553
Isotropy see also "Minkowski functionals" 544 578
Johnson — Mehl tesselation 527—529
Jordan theorem 88 184
Kriging 243
Laplace transform 288 534
Lattice 208
Lattice representation 208
Lattice translation 225
Lattice, sub-lattices and rotations 226
Law of the first contact 436 491
Least squares 281 284
Lebesgue measure 114
length measurement see also "Crofton formula" 422—423
LIMIT 70
Linear size distribution 323—332 488—491 509 557 573
Linear size distribution digital 37
Реклама