Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Logan J. — Applied Mathematics: A Contemporary Approach
Logan J. — Applied Mathematics: A Contemporary Approach



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Applied Mathematics: A Contemporary Approach

Автор: Logan J.

Аннотация:

This text presents, for the first time at an elementary level, current topics in applied mathematics such as singular perturbation, nonlinear wave propagation, bifurcation, similarity methods and the numerical solution of partial differential equations. It emphasizes the interdependency of mathematics and its application to physical phenomena, and is written in a style accessible to readers with a wide range of interests and backgrounds. There is also coverage of scaling and dimensional analysis, calculus of variations, Fourier and transform methods for partial differential equations and intergral equations.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1987

Количество страниц: 588

Добавлена в каталог: 23.11.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Norm, maximum      95
Norm, strong      95
Norm, vector      527
Norm, weak      94
Normal modes      291
Normed linear space      91 93
O and o notation      44
Orthogonality      183
Oscillator, damped      71 72 138 432
Oscillator, linear      71 129 134
Oscillator, nonlinear      39
Overlap domain      62
Overrelaxation      540
Parabolic equation      155 157
Pendulum      32 33 52 129
Periodic solution      393
Perturbation series      35
Perturbation solution      35
Perturbation, regular      35
Perturbation, singular      57
Phase plane      135 379
Phase portrait      380
phase velocity      232 245
Piston problem in gas dynamics      307
Plateau’s problem      117
Poincare — Bendixson theorem      394
Poincare — Lindstedt method      32
Point, bifurcation      358
Point, critical      380
Point, double      366
Point, high order singular      368
Point, isolated      367
Point, regular      366
Point, singular      366
Point, turning      368
Poisson’s equation      117 170 202
Population models, logistics      343
Population models, Malthusian      342
potential energy      127
Pressure      276 331
Quasi-linear equation, general solution      257
Rankine — Hugoniot conditions      314
Rate of convergence      530
Rayleigh line      315
Rayleigh’s example      410
Reaction-diffusion equation      168
Residual vector      49 530
Reynolds number      15 339
Reynold’s transport theorem      322
Riemann invariants      309
Scaling principle      26
Scattering      298
Schrodinger equation      148
Secular term      42
Separatrix      387
Similarity solution      417 442
Similarity variable      444
Soliton      247 248
Sound speed      283 307
Specific heat, constant pressure      279
Specific heat, constant volume      18 21 278
Spectral radius      529
Splitting of matrix      521
Splitting of matrix, Gauss — Seidel      525
Splitting of matrix, Jacobi      522
Stability      165 359
Stability of critical point      383
Stability of difference scheme      510 513
Stability of layered fluid      406
Stability theorem for first order equations      361
Stability theorem for linear systems      389
Stability theorem for nonlinear systems      392
Stability, asymptotic      359
Stability, Courant — Friedrichs — Levy criterion      549
Stability, exchange of      368
Stability, indicator      360 371
Stability, near double point      371
Stability, near turning point      369
Stability, von Neumann criterion      512
Stationary      86 99
strain      285
Streamlines      318
Stress      271 324
Sturm — Liouville problem, differential equations      182
Sturm — Liouville problem, regular      182
Sturm — Liouville problem, variational principle      149
Summation convention      328
Superposition principle      157 158
Tensor, rate of deformation      334
Tensor, stress      327
Tensor, viscous stress      332
Thermal parameters, table of      21
Thermodynamics, first law      238
Thermodynamics, second law      280
Time scale for diffusion processes      20 21
Time scale for general processes      28
Transformations      see "Local Lie group"
Transformations, one parameter family of      419
Transformations, stretching      449 466
Tridiagonal system      504 517
Truncation error      495 500
Unit free      6
UNITS      6
Variation of function      96
Variation of functional      96 97
Variation, admissible      96
Variation, Gateaux      96
Variation, second      101
Variational Principle      128
Variational problem      87
Vibrations of bar      284 482
Vorticity      338
Wave equation in acoustics      283
Wave equation in electrodynamics      301
Wave equation in spherical symmetry      304
Wave equation in vibrations of bar      287
Wave Equation, D’Alembert’s Solution      293
Wave equation, finite difference schemes      547 551
Wave equation, general solution      292
Wave equation, nonhomogenous      303
Wave, diffusive      245
Wave, dispersive      245
Wave, number      231
Wave, rarefaction      234
Wave, shock      233
Wave, simple      311
Wave, traveling      231
Well-posed problems      165
WKB approximation      305
Young’s modulus      286
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте