Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   

Поиск по указателям

Salvador G. — Topics in theory of algebraic functional fields
Salvador G. — Topics in theory of algebraic functional fields

Читать книгу

Скачать книгу с нашего сайта нельзя

Обсудите книгу на научном форуме

Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter

Название: Topics in theory of algebraic functional fields

Автор: Salvador G.


The fields of algebraic functions of one variable appear in several areas of mathematics: complex analysis, algebraic geometry, and number theory. This text adopts the latter perspective by applying an arithmetic-algebraic viewpoint to the study of function fields as part of the algebraic theory of numbers, where a function field of one variable is the analogue of a finite extension of Q, the field of rational numbers. The author does not ignore the geometric-analytic aspects of function fields, but leaves an in-depth examination from this perspective to others.

Key topics and features:

* Contains an introductory chapter on algebraic and numerical antecedents, including transcendental extensions of fields, absolute values on Q, and Riemann surfaces

* Focuses on the Riemann–Roch theorem, covering divisors, adeles or repartitions, Weil differentials, class partitions, and more

* Includes chapters on extensions, automorphisms and Galois theory, congruence function fields, the Riemann Hypothesis, the Riemann–Hurwitz Formula, applications of function fields to cryptography, class field theory, cyclotomic function fields, and Drinfeld modules

* Explains both the similarities and fundamental differences between function fields and number fields

* Includes many exercises and examples to enhance understanding and motivate further study

The only prerequisites are a basic knowledge of field theory, complex analysis, and some commutative algebra. The book can serve as a text for a graduate course in number theory or an advanced graduate topics course. Alternatively, chapters 1-4 can serve as the base of an introductory undergraduate course for mathematics majors, while chapters 5-9 can support a second course for advanced undergraduates. Researchers interested in number theory, field theory, and their interactions will also find the work an excellent reference.

Язык: en

Рубрика: Математика/

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 2006

Количество страниц: 668

Добавлена в каталог: 07.09.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
Предметный указатель
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2018
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте