Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Alexander C. — Market Models: A Guide to Financial Data Analysis
Alexander C. — Market Models: A Guide to Financial Data Analysis



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Market Models: A Guide to Financial Data Analysis

Àâòîð: Alexander C.

Àííîòàöèÿ:

Market Models provides an authoritative and up-to-date treatment of the use of market data to develop models for financial analysis. Written by a leading figure in the field of financial data analysis, this book is the first of its kind to address the vital techniques required for model selection and development. Model developers are faced with many decisions, about the pricing, the data, the statistical methodology and the calibration and testing of the model prior to implementation. It is important to make the right choices and Carol Alexander's clear exposition provides valuable insights at every stage.
In each of the 13 Chapters, Market Models presents real world illustrations to motivate theoretical developments. The accompanying CD contains spreadsheets with data and programs; this enables you to implement and adapt many of the examples. The pricing of options using normal mixture density functions to model returns; the use of Monte Carlo simulation to calculate the VaR of an options portfolio; modifying the covariance VaR to allow for fat-tailed P&L distributions; the calculation of implied, EWMA and 'historic' volatilities; GARCH volatility term structure forecasting; principal components analysis; and many more are all included.
Carol Alexander brings many new insights to the pricing and hedging of options with her understanding of volatility and correlation, and the uncertainty which surrounds these key determinants of option portfolio risk. Modelling the market risk of portfolios is covered where the main focus is on a linear algebraic approach; the covariance matrix and principal component analysis are developed as key tools for the analysis of financial systems. The traditional time series econometric approach is also explained with coverage ranging from the application cointegration to long-short equity hedge funds, to high-frequency data prediction using neural networks and nearest neighbour algorithms.
Throughout this text the emphasis is on understanding concepts and implementing solutions. It has been designed to be accessible to a very wide audience: the coverage is comprehensive and complete and the technical appendix makes the book largely self-contained.
Market Models: A Guide to Financial Data Analysis is the ideal reference for all those involved in market risk measurement, quantitative trading and investment analysis.


ßçûê: en

Ðóáðèêà: Ýêîíîìèêà è ôèíàíñû/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 494

Äîáàâëåíà â êàòàëîã: 19.09.2006

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Moving averages, time series models      331—332
Moving averages, unconditional correlation      49
Moving averages, unconditional volatility      49
Moving averages, volatility forecasts      126—128
Multi-factor models      see also "Factor models"
Multi-factor models, arbitrage pricing theory (APT)      181 233 247
Multi-factor models, explanatory variables      172
Multi-factor models, fundamental factors      233—235
Multi-factor models, ordinary least squares (OLS)      237
Multi-factor models, regression analysis      144
Multicollinearity      144 172—174 436—437
Multivariate distributions, copulas      8
Multivariate GARCH      see also "Bivariate GARCH"
Multivariate GARCH, academic research      64
Multivariate GARCH, asymmetry      114
Multivariate GARCH, Baba, Engle, Kraft and Kroner      see "BEKK model"
Multivariate GARCH, computational problems      107 115
Multivariate GARCH, conditional mean      111
Multivariate GARCH, convergence      109 115
Multivariate GARCH, correlation estimates and forecasts      205
Multivariate GARCH, covariance matrices      114 115 210
Multivariate GARCH, cross equation restrictions      114
Multivariate GARCH, large-dimensions      108 112
Multivariate GARCH, parameterization      112—114 217
Multivariate GARCH, portfolio risk      112
Multivariate GARCH, vech model      113 218
Multivariate GARCH, volatility estimates and forecasts      217
Multivariate time series, covariance stationarity      341—344
Multivariate time series, Granger causality      315—316 344—346
Multivariate time series, time series models      340—346
Multivariate time series, vector autoregressions      340—341
N-GARCH, local risk-neutral valuation      106
N-GARCH, parameter estimates      107
N-GARCH, volatility smile surface      81 106 107
Neural networks      395—396 447
New assets, missing data points      144
News announcements      see also "Market events"
News announcements, asymmetric volatility      79
News announcements, volatility clustering      65—66
Nikkei 225      15 86 89 129 155 199 200 403
Noise, Gaussian white noise      316
Noise, high frequency data      17
Noise, moving averages      49 63
Noise, orthogonal GARCH      216
Non-normal returns, distributions, testing      286—290
Non-normal returns, excess kurtosis      286—287 309—311
Non-normal returns, extreme value distributions      290—296
Non-normal returns, generalized extreme value (GEV)      290 293
Non-normal returns, hyperbolic distributions      296—297
Non-normal returns, non-normal distributions      290—301
Non-normal returns, normal mixture distributions      297—311
Non-normal returns, peaks over threshold (POT)      290—292 294 295
Non-normal returns, QQ plots      288—290
Non-normal returns, skews      286—287
Normal mixture distributions, applications      301—311
Normal mixture distributions, covariance VaR models      302—303
Normal mixture distributions, method of moments      300
Normal mixture distributions, non-normal returns      297—311
Normal mixture distributions, option pricing      305—311
NYMEX      54 56 111 153 154 326 355
Omega, GARCH      77 86 111
Option hedging      see also "Delta gamma vega"
Option hedging, GARCH models      98
Option hedging, perfect hedge assumed      21
Option hedging, underlying assets      10
Option pricing      24 see "Put
Option pricing, Black — Scholes model      1 10 21 104 106 305—306
Option pricing, calibrating model      34 43
Option pricing, excess kurtosis      306
Option pricing, GARCH models      98
Option pricing, implied volatility      4 10 21—45
Option pricing, Monte Carlo simulation      104 105
Option pricing, normal mixture distributions      305—311
Option pricing, observed market price      21
Option pricing, over/under priced      29
Option pricing, path dependent      100
Option pricing, smile effect      106—107 136
Option pricing, statistical volatility      29
Option value, discounted expectation      104 138
Ordinary least squares (OLS), alpha      167
Ordinary least squares (OLS), autocorrelation      431 432
Ordinary least squares (OLS), beta      111 167 231 236 238
Ordinary least squares (OLS), capital asset pricing model (CAPM)      111
Ordinary least squares (OLS), constrained allocations      371
Ordinary least squares (OLS), correlation      7
Ordinary least squares (OLS), covariance matrices      237 419—420
Ordinary least squares (OLS), Engle — Granger methodology      354 356
Ordinary least squares (OLS), estimators      414—419 433—436
Ordinary least squares (OLS), high/low risk stock      109
Ordinary least squares (OLS), linear regression models      414—419
Ordinary least squares (OLS), multi-factor models      237
Ordinary least squares (OLS), non-stochastic regressors      417—418
Ordinary least squares (OLS), normal distribution      419
Ordinary least squares (OLS), orthogonality      172
Ordinary least squares (OLS), portfolio risk      237
Ordinary least squares (OLS), regression      167 173 174
Ordinary least squares (OLS), residual analysis      429
Ordinary least squares (OLS), sampling error      236
Ordinary least squares (OLS), stochastic regressors      418—419
Orthogonal GARCH, accuracy      205
Orthogonal GARCH, calibration      211—220
Orthogonal GARCH, conditional correlation      211
Orthogonal GARCH, convergence      217
Orthogonal GARCH, correlation estimates and forecasts      109 110
Orthogonal GARCH, covariance matrices      116 180 210—220
Orthogonal GARCH, eigenvalues and eigenvectors      215 217
Orthogonal GARCH, estimation time periods      220
Orthogonal GARCH, illiquid maturities      214
Orthogonal GARCH, noise      216
Orthogonal GARCH, positive semi-definiteness      211
Orthogonal GARCH, volatility term structures      212
Orthogonality, covariance matrices      144 180 204—227
Orthogonality, exponentially weighted moving average (EWMA)      204 206—210 212—214
Orthogonality, ordinary least squares (OLS)      172
Orthogonality, principal component analysis (PCA)      141 146 204 207—209
OTC options      135 138
OTM (out of the money), Black — Scholes model      136 297 306 309
OTM (out of the money), call options      24 30
OTM (out of the money), equity options      104
OTM (out of the money), implied volatility      30
OTM (out of the money), long-term options      33
OTM (out of the money), market regimes      160
OTM (out of the money), put options      26 28 30 31
OTM (out of the money), risk horizon      43
OTM (out of the money), short-term options      33
OTM (out of the money), volatility forecasts      119
P&L, prediction      446
P&L, simple cash portfolios      261—262
P&L, trading strategy      124 125
P&L, VaR (value-at-risk) models      180 253 254 262—263
P&L, variance      181—182
Parameterization, BEKK model      114
Parameterization, bivariate GARCH      108 109 111
Parameterization, multivariate GARCH      112—114 217
Parameterization, vech models      113 114
Parameterization, volatility surfaces      167—170
Persistence, in volatility      see also "Beta"
Persistence, in volatility, exponentially weighted moving average (EWMA)      59 207
Persistence, in volatility, GARCH models      92
Persistence, in volatility, high frequency data      83
Persistence, in volatility, I-GARCH      76
Persistence, in volatility, Japan      86
Persistence, in volatility, RiskMetrics data      76 202
Persistence, in volatility, United States      86 91
Phillips — Perron test      328
Point forecasts, evaluation, accuracy      119—125
Point forecasts, meaning      118
Point forecasts, option valuation      136
Point forecasts, volatility      118 126
Portfolio diversification, correlation      186—187
Portfolio risk      see also "Risk"
Portfolio risk and returns      190 197 199
Portfolio risk, covariance matrices      179
Portfolio risk, determinants      1
Portfolio risk, factor models      237
Portfolio risk, irreducible risk      9—10
Portfolio risk, minimum-risk      112 179
Portfolio risk, multivariate GARCH      112
Portfolio risk, ordinary least squares (OLS)      237
Portfolio risk, stress covariance matrices      185
Portfolio theory, mean-variance analysis      186
Portfolios, beta      231—232
Portfolios, dynamically hedged      138—140
Portfolios, efficient portfolios in practice      198—201
Portfolios, marked-to-market (MtM) value      119 134—135
Portfolios, rebalancing      200—201
Portfolios, simple cash portfolios      261—262
Portfolios, volatility      9—10
Positive semi-definiteness, covariance matrices      116 179 180 181 206 211
Positive semi-definiteness, exponentially weighted moving average (EWMA)      184
Positive semi-definiteness, GARCH models      184
Positive semi-definiteness, orthogonal GARCH      211
Positive semi-definiteness, rounding error      184
Prediction, backtesting      444—445
Prediction, confidence intervals      444
Prediction, interval predictions      133—134 444
Prediction, likelihood      445
Prediction, long-term      52
Prediction, mean absolute error      445
Prediction, mean square error      445
Prediction, out-of-sample correlation coefficient      445
Prediction, P&L      446
Prediction, point predictions      443
Prediction, post-sample predictions      121 122
Prediction, price prediction models      401—407
Prediction, root mean square error (RMSE)      445
Prediction, statistical operation evaluation methods      445—447
Prediction, tails prediction      125
prices      see also "Option pricing" "Financial "Market "Spot "Underlying
Principal component analysis (PCA), advantages      143
Principal component analysis (PCA), collinear variables      143 144 171—174
Principal component analysis (PCA), conditional covariance      162—163
Principal component analysis (PCA), correlation      143 220
Principal component analysis (PCA), covariance matrices      144 204 205—206
Principal component analysis (PCA), data problems overcome      18 144 171—178
Principal component analysis (PCA), dimensions, reduction      141 143—144 153
Principal component analysis (PCA), eigenvalues      145 146 147 152 153 154 159
Principal component analysis (PCA), eigenvectors      145 152 153 154 159
Principal component analysis (PCA), fixed strike volatility      157 158 159—167 169
Principal component analysis (PCA), mathematical background      145—146
Principal component analysis (PCA), missing data      18 144 171 174—178 439
Principal component analysis (PCA), orthogonality      141 146 204 207—209
Principal component analysis (PCA), principal components representation      146
Principal component analysis (PCA), purpose      141
Principal component analysis (PCA), risk factors      204
Principal component analysis (PCA), scenario analysis      39 143 144 154—155 282
Principal component analysis (PCA), skews      154—171
Principal component analysis (PCA), smile effect      154—171
Principal component analysis (PCA), term structures      143 147—154
Principal component analysis (PCA), unconditional correlation matrices      147
Principal component analysis (PCA), unconditional covariance      162 206
Principal component analysis (PCA), variance      146
Principal component analysis (PCA), yield curves      147—153
Process volatility, Black — Scholes model      11 23
Process volatility, F-test      123
Process volatility, price process volatility      22 118
Process volatility, realized volatility, distinguished      11 121 123
Process volatility, VaR (value-at-risk) models      139
Process volatility, volatility forecasts      117 118 129
Process volatility, volatility surface      34
Put options, ATM options      30
Put options, Black — Scholes model      23—24
Put options, implied volatility      26—28
Put options, ITM      30
Put options, OTM      26 28 30 31
Put options, volatility term structures      31 32
QQ plots      288—290
Quadratic GARCH      81
Quadratic programming, investment analysis      185
Quadratic variance      181
Quadratic volatility surfaces      38 45 144 168
Random walk, components GARCH      78—79
Random walk, exchange rates      75
Random walk, I-GARCH      90
Random walk, stochastic processes      351
Random walk, time series models      320—322
Random walk, tracking error      350
Range-bounded markets, market regimes      36 44 117 156
RATS (Regression Analysis of Time Series)      80
Reaction      see also "Alpha"
Reaction, exponentially weighted moving average (EWMA)      59 207
Reaction, GARCH models      92
Reaction, RiskMetrics data      202
Reaction, volatility      59 73 86 90
Realized volatility, combined forecasts      132—133
Realized volatility, confidence intervals      133
Realized volatility, process volatility, distinguished      11 121 123
Realized volatility, standard error      133
Recursion, gradient vectors      95
Regression, autoregression      329—331 340—341
Regression, benchmark tracking models      144
Regression, equation      115
Regression, errors-in-variables      123
Regression, linear      see "Linear regression models
Regression, multi-factor models      144
Regression, squared returns      123 124
Regression, standard error      372
Regression, systems of seemingly unrelated regression equations (SURE)      434—435
Regression, variance forecasts      123 124
Regret, downside risk      259
Residual analysis, autocorrelation      429—432
Residual analysis, ordinary least squares (OLS)      429
Return distributions, dispersion      119
Return distributions, fat-tailed      30 82 125
Return distributions, specification      122
Risk      see also "Portfolio risk"
Risk aversion, assumption      198
Risk aversion, coefficients      195
Risk aversion, constant absolute risk aversion (CARA)      196
Risk aversion, constant relative risk aversion (CRRA)      196 197
Risk aversion, efficient frontier      197
Risk aversion, indifference      197—198
Risk aversion, trading limits      186
Risk aversion, utility function      195—196
Risk factors, arbitrage pricing theory (APT)      233
Risk factors, capital asset pricing model (CAPM)      232
Risk factors, covariance matrices      179
Risk factors, derivatives portfolios      182—183
Risk factors, factor models      229
Risk factors, generalized least squares      237—238
Risk factors, linear portfolios      181
Risk factors, Monte Carlo simulation      185
Risk factors, principal component analysis (PCA)      204
Risk factors, RiskMetrics data      202
Risk factors, variance      183
Risk horizons, volatility forecasts      11 43 57 60 117
Risk management, back office      180
Risk management, beta      109 236
Risk management, constant parameter assumptions      237—238
Risk management, copulas      9
Risk management, covariance matrices      179 180—185
Risk management, risk factors      143
Risk management, scenario analysis      34 38—43 141
Risk management, stress covariance matrices      185
Risk management, stress testing      141
Risk management, VaR (value-at-risk) models      236 259
Risk measurement, cash-flow maps      256
Risk measurement, classical techniques      236—239
Risk measurement, coherent risk measures      259
Risk measurement, constant parameter assumptions      237—238
1 2 3 4 5 6
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå