Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Shafarevich I.R. (ed.) — Algebraic Geometry II: Cohomology of Algebraic Varieties. Algebraic Surfaces (Encyclopaedia of Mathematical Sciences. Volume 35)
Shafarevich I.R. (ed.) — Algebraic Geometry II: Cohomology of Algebraic Varieties. Algebraic Surfaces (Encyclopaedia of Mathematical Sciences. Volume 35)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Algebraic Geometry II: Cohomology of Algebraic Varieties. Algebraic Surfaces (Encyclopaedia of Mathematical Sciences. Volume 35)

Автор: Shafarevich I.R. (ed.)

Аннотация:

This EMS volume consists of two parts. The first part is devoted to the exposition of the cohomology theory of algebraic varieties. The second part deals with algebraic surfaces. The authors have taken pains to present the material rigorously and coherently. The book contains numerous examples and insights on various topics. This book will be immensely useful to mathematicians and graduate students working in algebraic geometry, arithmetic algebraic geometry, complex analysis and related fields. The authors are well-known experts in the field and I.R. Shafarevich is also known for being the author of volume 11 of the Encyclopaedia.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1996

Количество страниц: 266

Добавлена в каталог: 14.07.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Theorem algebraization      69
Theorem base change      43 56 103
Theorem Bertini      137 244
Theorem Bezout      152
Theorem Cartan      6 26
Theorem comparison      39 67
Theorem connectedness      69
Theorem de Rham      23
Theorem degeneration      55
Theorem Deligne      115
Theorem duality      51 53 156
Theorem finiteness      38 106
Theorem Grauert      68
Theorem Hilbert      98
Theorem Hirzebruch proportionality      194
Theorem Hodge index      51 159
Theorem Index      240
Theorem Kodaira vanishing      58
Theorem Kodaira — Nakano vanishing      58
Theorem Lefschetz      148 247
Theorem Lefschetz — Hodge      71
Theorem Lefschetz, hard      118
Theorem Lefschetz, weak      68 112
Theorem Lueroth      170 230 247
Theorem Minkowski      88
Theorem Noether      20
Theorem on affine coverings      30
Theorem on formal functions      41
Theorem on invariant subspace      74 119
Theorem on projective normality      185
Theorem on resolution of points of indeterminacy      167
Theorem Ramanujam      157
Theorem Riemann existence      70
Theorem Riemann — Roch      44
Theorem Riemann — Roch — Grothendieck      48
Theorem Riemann-Roch-Hirzebruch      47
Theorem Rokhlin      211
Theorem Sard      137
Theorem semicontinuity      42
Theorem semisimplicity      118
Theorem Serre      28
Theorem Tsen      100
Theorem vanishing      58
Theorem Weil      83
Theory Hodge      55 239
Theory Kummer      99
Thurston, W.      131
Todd, J.A.      46
Torelli, L.      190 222
Torsor      97
Total Chern class      45
Total complex      15
Transformation elementary      172 229
Transformation monoidal      163
Transformation standard quadratic      170
Triangulation      8 62
Tsen, C.      4 100
Type of space      158
Type of surface      135
Unirational variety      230
Universal covering      88
Vanishing cohomology      107
Vanishing cycle      107
Variety Abelian      140
Variety Albanese      149
Variety Fano      231
Variety moduli      189
Variety of vanishing cycles      107
Variety Picard      149
Variety symplectic algebraic      226
Variety unirational      230
Vector exceptional      176
Vector extremal      176
Vector primitive      224
Veronese, G.      220 232
Very ample element      146
Vietoris, L.      24 73
Warning, E.      60 81
Weak Lefschetz theorem      68
Weierstrass normal form      201
Weight      72 115
Weight filtration      71
Weight fundamental      235
Weight pure      72 115
Weil, A.      4 7 79 83 85 86 115 116 197
Weyl, H.      234
Whitney, H.      45 221
Witt, E.      60
Yau, S.T.      191 193
Zariski, O.      4 11 41 75 87 93 97 131 147 169
Zeta function      82 113
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте