Авторизация
Поиск по указателям
Levine M. — Mixed motives
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Mixed motives
Автор: Levine M.
Аннотация: The author constructs and describes a triangulated category of mixed motives over an arbitrary base scheme. The resulting cohomology theory satisfies the Bloch-Ogus axioms; if the base scheme is a smooth scheme of dimension at most one over a field, this cohomology theory agrees with Bloch's higher Chow groups. Most of the classical constructions of cohomology can be made in the motivic setting, including Chern classes from higher X-theory, push-forward for proper maps, Riemann-Roch, duality, as well as an associated motivic homology, Borel-Moore homology and cohomology with compact supports. The motivic category admits a realization functor for each Bloch-Ogus cohomology theory which satisfies certain axioms; as examples the author constructs Betti, etale, and Hodge realizations over smooth base schemes.
This book is a combination of foundational constructions in the theory of motives, together with results relating motivic cohomology with more explicit constructions, such as Bloch's higher Chow groups. It is aimed at research mathematicians interested in algebraic cycles, motives and X-theory, starting at the graduate level. It presupposes a basic background in algebraic geometry
and commutative algebra.
Язык:
Рубрика: Математика /Алгебра /Алгебраическая геометрия /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1998
Количество страниц: 515
Добавлена в каталог: 23.03.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
-set 435
-set, equivalence relations 436
-set, graded 435
-module, holonomic 282
-category 377
-functor 377
-natural transformation 378
2-category 379
2-resolution 239
2-resolution, strict 240
2-resolution, weak 247
Absolute Hodge complexes 273—275
Absolute Hodge complexes, enlarged diagrams 274—275
Adams degree 258
Additive category 381
Additive category, free 384
Adjoining a base-point 361
Adjoining morphisms to a category 384
Adjoining morphisms to a DG tensor category 422—424
Adjoining morphisms to a tensor category 393
Alexander — Whitney map 463 478
Bi-products 380
Bloch’s formula 93
Blow-up distinguished triangle 237—239
Canonical cochains 258
Canonical filtration 277
Canonical topology 482
Canonical truncation 461
Categorical cochain operations 464—466
Category of pairs 385
Cech resolution 53 56
Chern character 169—171
Chern character for diagrams 170
Chern character for higher K-theory 164
Chern character, isomorphism 179 188
Chern classes for 163
Chern classes for higher K-theory 119 122 164
Chern classes for higher K-theory of a diagram 122—126
Chern classes for higher K-theory with support 123
Chern classes for higher K-theory, mod n 124 126
Chern classes for higher K-theory, total 165
Chern classes for line bundles 112
Chern classes for line bundles, properties 112
Chern classes for relative higher K-theory 124
Chern classes for relative higher K-theory with support 124
Chern classes for vector bundles 116
Chern classes, compatibility with localization and relativization 126
Chern classes, naturality 117
Chern classes, properties 116
Chern classes, total 116 164
Chern classes, universal 121
Chow motives 214—215
Chow motives, definition 214
Chow motives, embedding into 215
Chow’s Lemma 237
Classifying scheme 357—358
Classifying scheme, bundles 358
Classifying space 357
Closed simplicial model category 475
Cocontinuous 255
Codegeneracy map 449
Coface map 449
Cohomology over a category 466 467
Compactifiable embedding 225
Compactification 277
Complexes over a DG category 409 411—414
Complexes over a DG category, cone sequence 416
Complexes over a DG category, homotopy category 411
Complexes over a DG category, homotopy category, distinguished triangles 416
Complexes over a DG category, homotopy category, triangulated structure 416—420
Complexes over a DG category, tensor structure 414
Cone for complexes over a DG category 411
Cone for complexes over an additive category 410
Cone for Pre-Tr 411
Cone sequence for complexes over a DG category 416
Cone sequence for complexes over an additive category 410
Connected by a subset 335
Connected in codimension one 335
Connectivity 335
Construction 38—40
Correspondences 210 314
Cosimplicial scheme, motive of a 26
Cosimplicial scheme, very smooth 27
Coskeleton 482
Cup product 453
Cycle class map 47—51
Cycle class map for K-theory 183—185
Cycle class map for units 294
Cycle class map for varieties 48
Cycle class map with support 48
Cycle class map with support for varieties 48
Cycle class map, compatibility with Gysin morphism 138
Cycle class map, motivic 76—78 82
Cycle class map, motivic, injectivity 84
Cycle class map, motivic, isomorphism 88
Cycle class map, motivic, surjectivity 78 82
Cycle class map, naive 71 76
Cycle class map, properties 48—51
Cycle class map, relative 218
Cycle class map, relative, push-forward for 218
Cycle complex, Bloch’s 65 68
Cycle complex, comparison isomorphism 68
Cycle complex, motivic 68 69
Cycle complex, motivic for varieties 77
Cycle map 47—51
Cycle map for varieties 48
Cycle map with support 17
Cycle map with support for varieties 48
Cycles and cycle classes 47
Cycles for 10
Cycles functor 13 38
Cycles of relative dimension d 332
Cycles on simplicial schemes 107 110
Cycles on simplicial schemes, products 109
Cycles, basic definition 10
Cycles, effective 332
Cycles, equi-dimensional, properties of 352—356
Cycles, equi-dimensional, pull-back for 346
Cycles, functoriality 10
Cycles, intersection multiplicity 333
Cycles, intersection multiplicity over a normal base 340
Cycles, intersection multiplicity over a reduced base 349
Cycles, relative 181 331
de Rham functor 282
Decalage 278
Decomposition into type 445
Deformation diagram 131
Differential graded category 381
Differential graded category, homotopy equivalence 420
DIMENSION 331
Dimension over a scheme 331
Discriminant 239
Distinguished octahedra 429
Dold — Kan equivalence 362
Dual of a morphism 193
Dual of an object 192
Dual, canonical 194
Duality criterion for a tensor category 195—197
Duality criterion for a triangulated tensor category 204
Duality in tensor categories 191
Duality in triangulated tensor categories 198
Duality involution for a graded tensor category 195
Duality involution for a tensor category 194
Duality involution for a triangulated tensor category 201 204
Duality involution for smooth projective schemes 205—206
Duality involution for the triangulated motivic category 206 207
Duality involution for the triangulated Tate category 235
Duality involution, explicit formulae 210—214
Effective motives, category of 311
Effective motives, tensor product for 312
Eilenberg — maclane map 477
Equi-dimensional, cycle 332
Equi-dimensional, scheme 331
Etale site 482
Exact category 358
Excision isomorphism 18
Extended total complex 455
External product 391
External product, categorical 391
External product, universal 392
Fiber functor 483
Fiber functor, associated pro-object 485
Fiber functor, stalk 484
Fibrant, functor 475
Fibrant, simplicial set 475
Finite category 468
Flat, inverse system 271
Flat, presheaf 256
Flat, sheaf 256
Flatness 497
General linear group 358
Generated by a set of objects 425
Generic projection 95
Geometric cohomology theory 255 257
Geometric motives, category of 313
Geometric point 269 331
Gluing cycles 347
Godement resolution 486 490—499
Godement resolution and cohomology with support 490 492
Godement resolution and flatness 499
Godement resolution and sheaf cohomology 490
Godement resolution, associated complex 490
Godement resolution, products 493 496
Good compactifications 224
Good compactifications, duality for 224
Graded category 381
Graded homomorphism 383
Graded symmetric monoidal category 436
Graded symmetric monoidal category, punctual 436
Grothendieck group 359
Grothendieck pre-topology 481
Grothendieck site 481
Grothendieck site, presheaf on a 482
Grothendieck site, sheaf on a 482
Grothendieck topology 481
Grothendieck topology, covering families 481
Group homology 357
Gysin distinguished triangle 132
Gysin isomorphism 18
Gysin morphism 20 130 141
Gysin morphism for a closed embedding 131—132
Gysin morphism for a split embedding 130—131
Gysin morphism, compatibility with cycle classes 138
Gysin morphism, compatibility with products 142
Gysin morphism, functoriality 132
Gysin morphism, properties 132
Gysin sequence 132
Higher Chow groups and motivic cohomology 103 105
Higher Chow, Bloch’s 65 66
Higher Chow, comparison isomorphism 71\
Higher Chow, motivic 75—77
Higher Chow, motivic and hypercohomology 77
Higher Chow, motivic and X-theory 179
Higher Chow, motivic for varieties 77
Higher Chow, naive 70
Higher Chow, naive for varieties 72
Homotopy category of a DG category 409
Homotopy category of the category of complexes 411
Homotopy commutative product 463
Homotopy commutativity 322 441 445 455
Homotopy equivalence of DG categories 420
Homotopy fiber 127
Homotopy limit for simplicial sets 474—475
Homotopy limit, additive 467 468 471
Homotopy limit, additive and cohomology 473
Homotopy limit, additive and hypercohomology 474
Homotopy limit, additive, distinguished triangle 472
Homotopy limit, additive, functoriality 472
Homotopy limit, additive, non-degenerate 471
Homotopy one point category 13 435 440—441
Homotopy one point category, universal mapping property 441
Homotopy property 17
Homotopy property for homological motives 216
Homotopy property for motives of diagrams 35
Homotopy property for motives of schemes 19
Hurewicz map 362—363
Hurewicz map for diagrams 363—364
Hurewicz map, compatibility with products 364—369
Hypercohomology 62
Hypercohomology for motives 63 64
Hypercover 482
Hypercover of a sheaf 483
Hypercover of an object 483
Hyperresolutions for motives 59
Hyperresolutions for motives, maps of 59
Hyperresolutions for motives, the category of 59 61
Hyperresolutions, cubical 237 240
Hyperresolutions, cubical, category of 240
Hyperresolutions, cubical, strict 240
Hyperresolutions, cubical, weak 247
Index of inseparability 338
Intersection multiplicity on a regular scheme 333
Intersection multiplicity over a normal base 340
Intersection multiplicity over a reduced base 349
Inverse systems of sheaves 269
Inverse systems of Tate sheaves 270
Inverse systems, category of 269—270
Inverse systems, category of internal Horn 270
Inverse systems, category of tensor structure 270
Inverse systems, continuous hypercohomology for 270
Inverse systems, strongly acyclic 271
Inverse systems, strongly normalized 271
K-group with support 123
K-group, relative 123
K-group, relative with support 124
K-theory and homology of GL 362
K-theory for diagrams 360
K-theory for schemes 358
Kunneth isomorphism 18
Kunneth isomorphism for compactly supported motives 217
Kunneth isomorphism for diagrams 36
Kunneth isomorphism for homological motives 216
L-functions of motives 292
Lambda ring 161
Lambda ring, Adams operations 180
Lambda ring, Adams operations for higher K-theory 181
Lambda ring, augmented 180
Lambda ring, gamma filtration 180
Lambda ring, special 162—163
Lambda ring, structure for 163
Lambda ring, structure for higher K-theory 179—180
Leibnitz rule 295
Localization of a triangulated category 425—426
Localization of a triangulated tensor category 426
Localization, connecting homomorphism 299—302
Localization, distinguished triangle 22
Localization, distinguished triangle for homological motives 216
Localization, distinguished triangle for motives with support 22
Localization, distinguished triangle for relative motives 34
Localization, sequence 126 129
Localization, sequence, compatibility with Chern classes 128—130
MAH complex 285
Mayer — Vietoris for homological motives 216
Mayer — Vietoris for motives 21
Mayer — Vietoris for motives with support 22
Milnor K-groups 293 298—303
Milnor K-groups and motivic cohomology 298
Milnor K-groups, tame symbol 302
Milnor K-sheaf 303
Mixed absolute Hodge complex 285
Реклама