Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Audin M., Silva A., Lerman E. — Symplectic geometry of integrable Hamiltonian systems
Audin M., Silva A., Lerman E. — Symplectic geometry of integrable Hamiltonian systems



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Symplectic geometry of integrable Hamiltonian systems

Авторы: Audin M., Silva A., Lerman E.

Аннотация:

Among all the Hamiltonian systems, the alics integrable ones - those which have many conserved quantities - have special geometric properties; in particular, their solutions are very regular and quasi-periodic. The quasi-periodicity of the solutions of an integrable system is a result of the fact that the system is invariant under a (semi-global) torus action. It is thus natural to investigate the symplectic manifolds that can be endowed with a (global) torus action. This leads to symplectic toric manifolds (part B of this book), which are examples of extremely symmetric Hamiltonian systems. Physics makes a surprising come-back in part A: to describe Mirror Symmetry, one looks for a special kind of Lagrangian submanifolds and integrable systems, the special Lagrangians. Furthermore, integrable Hamiltonian systems on punctured cotangent bundles are a starting point for the study of contact toric manifolds (part C of this book). Along the way, tools from many different areas of mathematics are brought to bear on the questions at hand, in particular, actions of Lie groups in symplectic and contact manifolds, the Delzant theorem, Morse theory, sheaves and \v{C}ech cohomology, and aspects of Calabi-Yau manifolds.

This book contains an expanded version of the lectures delivered by the authors at the CRM Barcelona in July 2001. It serves as an introduction to symplectic and contact geometry for graduate students and will be useful to research mathematicians interested in integrable systems.



Язык: en

Рубрика: Математика/

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 2003

Количество страниц: 233

Добавлена в каталог: 28.04.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте