Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Goursat E. — A course in mathematical analysis. Volume 2, part 2: Differential equations
Goursat E. — A course in mathematical analysis. Volume 2, part 2: Differential equations



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: A course in mathematical analysis. Volume 2, part 2: Differential equations

Автор: Goursat E.

Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1945

Количество страниц: 306

Добавлена в каталог: 26.04.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Substitutions linear equations, canonical form      252 48; 48;
Substitutions linear equations, system of linear equations, canonical form      165 61;
Substitutions linear equations, Wronskian      129 47
Successive approximations      62 27
Successive approximations, analytic functions      66 29; 37; 64
Successive approximations, Cauchy — Lipschitz method      61 27; 30; 30
Successive approximations, Cauchy'sfirst proof      68 30; 30
Successive approximations, coefficients functions of a parameter      65 Note
Successive approximations, Lindelof's addition      62 27
Successive approximations, linear equations      64 28
Successive approximations, Lipschitz condition      68 30; 94
Successive approximations, non-analytic integrals      175 64
Successive approximations, real variables      61 27; 27; 30; 150 65
Successive approximations, star      67 29
Surfaces, conoids      220 ex.
Surfaces, conoids, developable      240 82; 86; ex.
Surfaces, conoids, ellipsoid      41 Note
Surfaces, conoids, focal      209 74; 77
Surfaces, conoids, helicoids      220 ex. 83
Surfaces, conoids, orthogonal      223 77
Surfaces, conoids, parallel      289 ex.
Surfaces, conoids, ruled      280 ex. ex.
Surfaces, conoids, tubular      240 ex. ex.; "Envelopes"
Symbolic polynomial      113 41; 42; 43
Symbolic polynomial, divisor      114 41
Symbolic polynomial, greatest common divisor      113 41
Systems of differential equations      60 26; 31; Note
Systems of differential equations, covariant      80 Note
Systems of differential equations, existence theorem      see "Existence theorem"
Systems of differential equations, first integrals      see "First integrals"
Systems of differential equations, general integral      57 26
Systems of differential equations, integral curve      60 26
Systems of differential equations, invariant integrals      see "Invariant integrals"
Systems of differential equations, multipliers      74 31; 32; 33
Systems of differential equations, singular integrals      208 74; "Systems
Systems of homogeneous linear equations      152 56
Systems of homogeneous linear equations, (D'Alembert's method)      161 58
Systems of homogeneous linear equations, adjoint system      156 57; 62
Systems of homogeneous linear equations, auxiliary equation      158 58
Systems of homogeneous linear equations, canonical form      161 59; 61; 65
Systems of homogeneous linear equations, constant coefficients      157 58; 58
Systems of homogeneous linear equations, fundamental system of integrals      153 56
Systems of homogeneous linear equations, periodic coefficients      164 61; 62
Systems of homogeneous linear equations, reducible systems      165 62
Systems of homogeneous linear equations, relation to Jacobi's equation      163 60
Systems of homogeneous linear equations, substitutions      165 61
Systems of non-homogeneous linear equations      154 56
Systems of non-homogeneous linear equations, Cauchy's method      154
Systems of non-homogeneous linear equations, existence theorem      50 23
Systems of non-homogeneous linear equations, independent equations      265 88
Systems of non-homogeneous linear equations, X[Y(f)]-Y[X(f)]      266 88;
Systems of partial differential equations of first order      272 90
Systems of partial differential equations, homogeneous linear equations of the first oiMer      265 88
Systems of partial differential equations, normal form, general existence theorem      283 94; "Involutory
Tannery      139
Taylor      35 18
Total differential equations      51 24; 78; 83; 91
Total differential equations, Bertrand's method      232 80; ex.
Total differential equations, completely integrable      52 24; 78
Total differential equations, existence theorem      51 24
Total differential equations, geometric interpretation      227 78
Total differential equations, integral surface      227 78
Total differential equations, Mayer's method      229 79
Total differential equations, method of integration      225 78; 80
Total differential equations, Pdx + Qdy + Rdz = 0      230 80;
Trajectories      13 7; 7; 17; 36
Transcendental critical points      197
Transformations      82 32; 32;
Transformations of complete systems      267
Transformations, admitting a group of      89 96
Transformations, covariants      80 Note
Transformations, Cremona      198
Transformations, extended group of      94
Transformations, identical      88 34; 36
Transformations, infinitesimal      86 34; 36; 36;
Transformations, inverse      89 34
Tresse      286 94
Tubular surfaces      240 ex. ex.
Unicursal quartic      19 ex. 72
Variation of constants      107 89;
Weierstrass      45 21; 48
Weierstrass's elementary divisors      132
wronskian      129 47
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте