Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Andrews P.B. — An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof
Andrews P.B. — An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof

Автор: Andrews P.B.

Аннотация:

This introduction to mathematical logic starts with propositional calculus and first-order logic. Topics covered include syntax, semantics, soundness, completeness, independence, normal forms, vertical paths through negation normal formulas, compactness, Smullyan's Unifying Principle, natural deduction, cut-elimination, semantic tableaux, Skolemization, Herbrand's Theorem, unification, duality, interpolation, and definability. The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory. Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises. Audience: This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1986

Количество страниц: 318

Добавлена в каталог: 24.04.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Interpolation sentence      149
Interpretation      46 47 75 185 186
Intersection      180
IP      68 109
Isomorphic      191 192 257
Isomorphism      191 258
Language      86 193
Leaf      118
Least-number operator      218 220
Length      9
Less specified than      139
lg      237
Line      109
Literal      28 88
Loeb      253 254
Loeb's theorem      254
LOEWENHEIM      94
Loewenheim — Skolem theorem      94 125
Logical constant      162
Logistic system      2 11
Lyndon      150
Material implication      19
Matijasevic      250
Matrix      72
MAX      234
Meaning      76
Mendelson      225
Meredith      16
meta-language      4
Metatheorem      4
Method of vertical paths      33
Mgu      139
Minimal scope      127
Minimization      217 220 225 247
Miniscope      127
Model      77 187
modus ponens      11 25 51 57 156 173
Monadic      47 157
Monus      231
More general than      139
Most general unifier      139
MP      11 51 57 173
Natural deduction      108—110
Natural number      8 203
NC      201
Necessary      19
NEG      109
Negation      4 27 34 159
Negation Elimination      129
Negation Introduction      113
Negation normal form      31 133
Negation normal sentence      133
Negation rule      109
Negative      54 73 149
Nnf      31 133
NNs      133
Node      117 118
Nonlogical constant      162
Nonstandard      96 198—200
Nonstandard analysis      96 198
Normal Form Theorem      247
Null formula      109 112 128
Num      245 248
Numeral      209
Numerical function      219
Numerical relation      220
o      155 158 159 162
Object language      4
Only if      19
Oppen      142
Order      100 155 211—217
Origin      118
pair      160 185
Parable      143 247
Paradox      95 97 157 254 255
PARAMETER      162
Partial recursive      225
PCI      8
Peano's postulates      96 202 205 206 208 209 257
Pierce's dagger      27
Planar      95
PMI      8
Polynomial      36
Positive      54 73 149
Postulate      2 46 52
Power set      95 180 184
PR      235
Predecessor      231
Predicate variable      45
Prefix      72
Prenex normal form      72—75 127
Prime      235
primitive      13
Primitive recursion      221 225
Primitive recursive      224 225 228
Primitive recursively axiomatized      244
Primitive symbol      155 162
Principal dual      146
Principia Mathematica      201
Projection      185 225
proof      11 51 164 245 248
Proof from hypotheses      11 57 165
Proof outline      70
Proper expansion      86
Proper symbol      4
ProperSymbol      241
Property B      127
Property C      127
Propositional connective      6 27
Propositional variable      4 45 155
Propositional wff      175
Pure      91
Pure extension      2440
q      241
Quantification theory      45
Quantifier      46 72
Quine      131
r.e.      248
Real number      198
Rearranging      109
Rectified      73
Recursion operator      222
RECURSIVE      245 246 262
Recursively axiomatized      244
Recursively enumerable      248
Reflexivity      101 155
Refutation      41 108
Regular      220 225
Represent      209 210 250 251
Representable      210 225 245 246 262
Resolution      40—44 131
Resolvent      41
Robinson, J.      250
Robinson, J.A.      41 131 140
Root      118
rosser      249 256
Rule      244
Rule C      64 67 110 179
Rule of Alphabetic Change of Bound Variables      56 57 168 169
Rule of Cases      68 110 173
Rule of Existential Generalization      62
Rule of generalization      57
Rule of Indirect Proof      109
Rule of inference      3 11 51 164
Rule of substitution      12 60
Rule P      58 109 176
Rule Q      177
Rule R      164
Rule RR      166
Rule T      172
Russell      201
Russell's paradox      131 157
Satisfy      18 37—39 77 187
Schoenfinkel      202
Schuette      112 117
Scope      5 47
Second-order logic      46 154 156
Selection      162
Semantic tableau      117—122
Semantics      3 16 22 37 75—82 185—192
Sentence      48 164
Set      158
Sheffer's stroke      27 37
Siekmann      142
Signum      232
simp      113
Simple Herbrand instance      135
Simple instance      133
simplification      113 129 139
Skolem      124 127
Skolem functor      124
Skolem's paradox      94 198
Skolemization      123
Skolemizcd form      124
Smullyan      88 91
Smullyan's Unifying Principle      115 121 128 129 149 150 197
Soundness      20 80 188
Special      25
Standard model      186 190 257
sub      12 60 172
Subformula property      112
Subset      180
Substitution      7 12 46 49 129 138 139 172
Substitution instance      52
Substitution-Value Theorem      79
Substitutivity of equality      101 155
Substitutivity of equivalence      28 55 59
Substitutivity of Implication      54 59 124
Subsume      43
Subtraction      231
Successor      203
Sufficient      19
Sufficiently pure      91
Symmetry      145
Syntactical variable      4 5 11 46 162 163
Syntax      3 16 22 37
Syntax language      4
t      27 35 36
t-f satisfies      134
Tarski      264—266
Tarski's theorem      264 265
Tautologous      52 175
Tautology      17 19 20 34 175
Term      45 158
Terminal node      118
Theorem      11 52 164 178 250
Theorem schema      20
Third-order logic      154
Topological space      40
Totally ordered      118
Trans      14
Transfinite type theory      154
Transitive      35 188
Transitive closure      118 122
Transitive Law of Implication      14
TREE      117 118
TRUE      17 77 187 264
Truth      17 160 266
Truth assignment      134
Truth table      18
Truth value      17 27 185
Truth-function      27
Truth-functional contradiction      134
Truth-functionally satisfies      134
Type symbol      154 155 162
Type theory      154—200
TypeSymbol      240
Unbounded minimization      235
Undecidable      53 262 263
Unification      132 138—142
Unification algorithm      140
Unification Theorem      140
Unifier      138
Unifies      138
union      180
unique      103
Universal      123
Universal closure      79
Universal generalization      110 113 172
Universal instantiation      57 110 119 129 171
Unsatisfiahle      18 77
Unsolvable      53 262 263
vacuous      72
Valid      20 77 187 197
Value      17 76 77 186
van Heijenoort      127
van Vaalen      142
Variable      46 155 162
Variable-free      89
Verifies      134
Vertex      95
Vertical path      32 33
Weaken      113
Well-formed formula      3 4 45 46 163
Well-ordering      217
Wf part      6 48
Wff      4 5 45 155 158 159 162 241
Whitehead      201
Zero      203
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте