Авторизация 
		         
		        
					
 
		          
		        
			          
		        
			        Поиск по указателям 
		         
		        
			        
					 
		          
		        
			          
			
			         
       		 
			          
                
                    
                        
                     
                  
		
			          
		        
			          
		
            
	     
	    
	    
            
		
                    Apostol T. — Mathematical Analysis, Second Edition 
                  
                
                    
                        
                            
                                
                                    Обсудите книгу на научном форуме    Нашли опечатку? 
 
                                
                                    Название:   Mathematical Analysis, Second EditionАвтор:   Apostol T.  Аннотация:     It provides a transition from elementary calculus to advanced courses in real and complex function theory and introduces the reader to some of the abstract thinking that pervades modern analysis.   
Язык:  Рубрика:  Математика /Статус предметного указателя:  Готов указатель с номерами страниц ed2k:   ed2k stats Издание:  2Год издания:  1974Количество страниц:  492Добавлена в каталог:  17.03.2014Операции:  Положить на полку  |
	 
	Скопировать ссылку для форума  | Скопировать ID 
                                 
                             
                        
                     
                 
                                                                
			          
                
                    Предметный указатель 
                  
                
                    
                        Restriction of a function 35 Riemann – Lebesgue lemma 313 Riemann, condition 153 Riemann, Georg Friedrich Bernard (1826-1866) 17 142 153 192 209 312 313 318 389 475 Riemann, integral 142 389 Riemann, localization theorem 318 Riemann, sphere 17 Riemann, theorem on singularities 475 Riemann, zeta function 192 209 Riesz – Fischer theorem 297 311 Riesz, Frigyes (1880-1956) 252 297 305 311 Righthand derivative 108 Righthand limit 93 Rolle, Michel (1652-1719) 110 Rollers theorem       110 Root test 193 Roots of complex numbers 22 Rouche, Eugine (1832-1910)       475 Rouche’s Theorem 475 S(I), set of step functions on an interval I       256 S(P, f,        141 Saddle point 377 scalar 48 Schmidt, Erhard (1876-1959) 335 Schoenberg, Isaac J., (1903-1990)       224 Schwarz, Hermann Amandus (1843-1921) 14 27 30 122 177 294 Schwarzian derivative 122 Schwarz’s lemma 474 Second mean-value theorem for Riemann integrals 165 Second-derivative teat for extrema       378 Semimetric space 295 Separable metric space 68 Sequence, definition of 37 Set algebra 40 Similar (equinumerous) sets 38 Simple curve 435 Simply connected region 443 Singularity 458 Singularity, essential 459 Singularity, pole 458 Singularity, removable 458 Slobbovian integral 249 Space-filling curve 224 Spherical coordinates 419 Square-integrable functions 294 Stationary point 377 Step function 148 406 Stereo graphic projection       17 Stieltjes integral 140 Stieltjes, Thomas Jan (1856-1894) 140 Stone, Marshall H. (1903-1989) 252 Strictly increasing function 94 Subsequence 38 Subset 1 32 Substitution theorem for power series 238 Sup norm 102 sup, inf, supremum, (infinum)       9 Supremum 9 Symmetric quadratic form 378 Symmetric relation 43 Tannery, Jules (1848-1910) 299 Tannery’s theorem 299 Tauber, Alfred (1866-circa 1947)       246 Tauberian theorem 246 251 Taylor, Brook (1685-1731) 113 241 361 449 Taylor’s formula with remainder 113 Taylor’s formula with remainder, for functions of several variables 361 Taylor’s series 241 449 Telescoping series 186 Theta function 334 Tonelli — Hobson test 415 Tonelli, Leonida (1885-1946) 415 Topological, mapping 84 Topological, property 84 Topology, point set 47 Total variation 129 178 Transformation 35 417 Transitive relation 43 Triangle inequality 13 19 48 60 294 Trigonometric series 312 Two-valued function 86 U(I), set of upper functions on an interval I       256 U(P, f,        151 Uncountable set 39 Uniform bound 221 Uniform continuity 90 Uniform convergence, of sequences 221 Uniform convergence, of series 223 Uniformly bounded sequence 201 Union of sets 41 Unique factorization theorem 6 Unit coordinate vectors 49 Upper bound 8 Upper function 256 406 Upper half-plane 463 Upper integral 152 Upper limit 184 Value of a function 34 Variation, bounded 128 Variation, total 129 Vector 47 Vector-valued function 77 Volume 388 397 Weierstrass, Approximation Theorem 322 Weierstrass, Karl (1815-1897) 8 54 223 322 475 Weierstrass, M-test 223 Well-ordering principle 25 Winding number 445 Wronski, J.M.H. (1778-1853) 122 wronskian 122 Young, William Henry (1863-1942) 252 312 Z, set of all integers (positive, negative, and zero)       4 Zero measure 169 391 405 Zero of an analytic function 452 Zero vector 48 Zeta function, Euler product for 209 Zeta function, integral representation 278 Zeta function, series representation 192 [a,b), (a,b], half-open intervals 4 [x], greatest integer        11 {x: x satisfies P}, the set of x which satisfy property P       3 32 
                            
                     
                  
			Реклама