Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Bessaga C., Pełczyński A. — Selected topics in infinite-dimensional topology
Bessaga C., Pełczyński A. — Selected topics in infinite-dimensional topology



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Selected topics in infinite-dimensional topology

Авторы: Bessaga C., Pełczyński A.

Аннотация:

This book is an attempt to give a systematic presentation of results and methods (established mostly in the last ten years) which concern the topology of infinite-dimensional spaces appearing in functional analysis and admitting a local linear structure. Selecting the material we have restricted ourselves to studying and classifying the topological structure of the objects ignoring richer structures (like differentiable structure, Fredholm structure, etc.) and leaving aside any discussion of morphisms between the objects. The permanent rapid progress of the theory resulted that despite our intention we were unable to discuss very recent important results, and ingeneous techniques based on sophisticated topological apparatus. In particular we have not presented J. West's theorems on factors of the Hilbert cube based on his interior approximation technique, T. A. Chapman's theory of Hilbert cube manifolds, relationship between Borsuk's shape and Z-sets discovered by Chapman, the Schori-West theorem stating that the space of closed subsets of the segment [0;1] is homeomorphic to the Hilbert cube. We have also omitted the discussion of homotopy types of general linear groups of Banach spaces.
The fundamental results presented in this book are:
Theorem of Keller (1931) stating that every infinite-dimensional compact convex subset of the Hilbert space is homeomorphic to the Hilbert cube.
Theorem of Kadec and Anderson (1965-66) on topological equivalence of infinite-dimensional separable Frechet spaces;
Theorem of Henderson (1969) stating that (under certain assumption on the model) the homotopy equivalence between infinite-dimensional manifolds implies their homeomorphism.


Язык: en

Рубрика: Математика/Геометрия и топология/Общая топология/

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 1975

Количество страниц: 353

Добавлена в каталог: 23.07.2006

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте