Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Griewank A. — Evaluating derivatives: principles and techniques of algorithmic differentiation
Griewank A. — Evaluating derivatives: principles and techniques of algorithmic differentiation



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Evaluating derivatives: principles and techniques of algorithmic differentiation

Автор: Griewank A.

Аннотация:

Algorithmic, or automatic, differentiation (AD) is concerned with the accurate and efficient evaluation of derivatives for functions defined by computer programs. No truncation errors are incurred, and the resulting numerical derivative values can be used for all scientific computations that are based on linear, quadratic, or even higher order approximations to nonlinear scalar or vector functions. In particular, AD has been applied to optimization, parameter identification, equation solving, the numerical integration of differential equations, and combinations thereof. Apart from quantifying sensitivities numerically, AD techniques can also provide structural information, e.g., sparsity pattern and generic rank of Jacobian matrices.

This first comprehensive treatment of AD describes all chainrule-based techniques for evaluating derivatives of composite functions with particular emphasis on the reverse, or adjoint, mode. The corresponding complexity analysis shows that gradients are always relatively cheap, while the cost of evaluating Jacobian and Hessian matrices is found to be strongly dependent on problem structure and its efficient exploitation. Attempts to minimize operations count and/or memory requirement lead to hard combinatorial optimization problems in the case of Jacobians and a well-defined trade-off curve between spatial and temporal complexity for gradient evaluations.

The book is divided into three parts: a stand-alone introduction to the fundamentals of AD and its software, a thorough treatment of methods for sparse problems, and final chapters on higher derivatives, nonsmooth problems, and program reversal schedules. Each of the chapters concludes with examples and exercises suitable for students with a basic understanding of differential calculus, procedural programming, and numerical linear algebra.



Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1987

Количество страниц: 394

Добавлена в каталог: 03.03.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Sparsity, internal      131
Sparsity, pattern      141
Sparsity, pseudostatic      122
Sparsity, static      122
Splitting column      207
Splitting row      206
Stable domain      267
Step function      266
Stochastic optimization      253
Storage location      see "Allocation"
Stripmine      122
Subadditive tasks      29
Sweep      see also "Motion"
Sweep, return      103
Symmetric computational graph      192
TAMC      79 305 312 317
Tangent of adjoint      82
Tangent, complexity      43
Tangent, evaluation procedure      39
Tangent, function      40
Tangent, implicit      284
Tangent, mapping      80
Tangent, operation      40
Tangent, procedure      39 41
Tangent, propagation      38
Tangent, recursion      39
Tape      53 304
Task, additive      29 42
Task, boundedness      33
Task, computational      29
Task, homogeneous      29
Taylor coefficient      220 230
Taylor Coefficient Functions      221
Taylor polynomial propagation      221
Taylor, arithmetic      226
Taylor, calculus      236
Taylor, complex approximation of      227
Temporal complexity      29 305
Tensor, coefficient      220 230
Tensor, evaluation      228
Time evolution      306
Total recalculation      318
Tree reversal      315
Triangular nonlinear system      22
Trumpet      190
Truncated Newton      108
Two-phase approach      300
Two-way compatibility      27 80
Uninterrupted reversal      331
Value taping      56
Vandermonde matrix      143
Variable, active      99
Variable, dependent      6
Variable, independent      6 99
Variable, intermediate      20
Variable, mathematical      5 26
Variable, program      26
Vector, argument      20 26
Vector, derivative, higher order      218
Vector, valued function      20
Vertex-elimination      159 173
Weak depth      316
Weight functional      37
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте