|
|
Авторизация |
|
|
Поиск по указателям |
|
|
|
|
|
|
|
|
|
|
Dicks W., Dunwoody M.J. — Groups acting on graphs |
|
|
Предметный указатель |
SCC see Simple closed curve
Schanuel’s Lemma 111
Schreier Index Formula 37
Semidirect product 30
Serre’s Construction 170
Serre’s Extension Theorem 172
Simple closed curve 243
Simple closed path 8
simplex 215
Simplicial chain complex 218
Simplicial complex 215
Simplicial complex, locally finite 216
Simplicial complex, oriented 217
Simplicial map 217
Size sequence 91
Skeleton 215
Special linear group 21-7 106
Stallings — Swan theorem 114
Stallings’ Ends Theorem 75
Standard graph = standard tree 13
Star 5
Stone Representation Theorem 124
Structure map of tree 48
Structure theorem for -set 4
Structure theorem for group acting on CW-complex 41
Structure theorem for group acting on graph 39
Structure theorem for group acting on tree 15
Subtree 8
Subtree, in fundamental -transversal 10
Subtree, maximal 11
Subtree, minimal (-) 20
Surface group 102 137
Term of a complex 29
| Terminal (-)tree 130
Terminal vertex of edge 4
Terminal vertex of path 8
Thin 55
Tor 145
Trace 202
Trace, (-)map 109
Trace, Hattori — Stallings 204
Track 224
Track, minimal 237
Track, thin 234
Track, twisted 227
Translate edge 18
Translate of closed path 40
Transversal (-) 4
Transversal fundamental (-) 10
TREE 8
Tree, set 49
Tree, standard 13
Tree, unoriented 53
Trivial action 3
Trivial fibre 79
Trivial group 2
UNIT 21
Universal covering tree 36 39
Universal covering tree, tree 53
Universal covering tree, unoriented graph 67
Valency of graph 67
Valency of vertex 5
Vertex 4
Vertex group 11
Vertex set 4
Word 1
|
|
|
Реклама |
|
|
|