Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   

Поиск по указателям

Lang S. — Some History of the Shimura-Taniyama Conjecture
Lang S. — Some History of the Shimura-Taniyama Conjecture

Обсудите книгу на научном форуме

Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter

Название: Some History of the Shimura-Taniyama Conjecture

Автор: Lang S.


I shall deal specifically with the history of the conjecture which asserts that every elliptic curve over Q (the field of rational numbers) is modular. In other words, it is a rational image of a modular curve X0 (N), or equivalently of its Jacobian variety J0 (N). This conjecture is one of the most important of the century. The connection of this conjecture with the Fermat problem is explained in the introduction to Wiles’s paper (Ann. of Math. May 1995), and I shall not return here to this connection. However, over the last thirty years, there have been false attributions and misrepresentations of the history of this conjecture, which has received incomplete or incorrect accounts on several important occasions. For ten years, I have systematically gathered documentation which I have distributed as the
“Taniyama-Shimura File”. Ribet refers to this file and its availability in [Ri 95]. It is therefore appropriate to publish a summary of some relevant items from this file, as well
as some more recent items, to document a more accurate history. I call the conjecture the Shimura-Taniyama conjecture for specific reasons which will be made explicit.

Язык: en

Рубрика: Математика/

Тип: Статья

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 1995

Количество страниц: 7

Добавлена в каталог: 08.07.2006

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
Предметный указатель
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2022
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте