Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Knuth D.E. — Axioms and Hulls
Knuth D.E. — Axioms and Hulls



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Axioms and Hulls

Автор: Knuth D.E.

Аннотация:

One way to advance the science of computational geometry is to make a comprehensive study of fundamental operations that are used in many different algorithms. This monograph attempts such an investigation in the case of two basic predicates: the counterclockwise relation pqr, which states that the circle through points (p, q, r) is traversed counterclockwise when we encounter the points in cyclic order p, q, r, p,...; and the incircle relation pqrs, which states that s lies inside that circle if pqr is true, or outside that circle if pqr is false...


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1992

Количество страниц: 118

Добавлена в каталог: 16.02.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$\infty$      69 72 73 92
3D convex hulls      72 89—92
3SAT problem      20
4L systems      43
4M systems      41
5M systems      93
Absolute value of signed points      12
Acyclic oriented matroids      35 40 55 93 96
Adjacent circuits      44
Adjacent points      v 69
Adjacent points in vortex-free tournament      28
Adjacent pre-CC systems      19
Adjacent transpositions      29
Al-Aamily, E.      100
Algorithms, for convex hulls      47 48 52
Algorithms, for Delaunay triangulation      73
Algorithms, for sorting      29 62—65
Algorithms, incremental      47 48 52 73 98
Algorithms, parsimonious      2 62—67 98
Algorithms, verification of      49 78—79
Allowable sequences      94
Almost-canonical form      32
Alternating group      10
Anti-isomorphism      33
Antisymmetry      4 62
Approximation-based algorithms      67
Aragon, Cecilia Rodriguez      53 100
Arrangements of lines and pseudolines      34-35 94 96
Asano, Tetsuo      102
Asymmetry      64
Average-case analysis      50—51 65 80—81
Axiom 1      4 6 16 36
Axiom 2      4 6
Axiom 3      4 6
Axiom 4      4 7 10 29 36 42 45 56
Axiom 5      4 7—9 11 29 42 45 56
Axiom 5'      5 7 8 11
Axiom 6      42
Axiom C1-C5      71
Axiom C4'      90 95
Axiom L1-L3      43
Axiom M1-M4      40 93
Axiom R1'-R2'      64—65
Axiom R1-R2      62 64—65
Axiomatic methods, value of      v—vi 1—3 62
Balanced trees      55
Bern, Marshall Wayne      96 97 100
Betweenness      25 30 94
binary search trees      47 55
Binary trees      62
Bjoerner, Anders      100
Bland, Robert Gary      95 98 100
Bokowski, Jurgen      95 96 100
Bose, Raj Chandra      103
Branch instructions in a data structure      48 74
Bubblesort      29—32
C      52 53 60
Cartesian products      68
Catalan, Eugene Charles, numbers      36
CC systems, defined      1 5 9
CCC systems, defined      2 70 93 97
CCCC systems      89 93 97 98
Change-ringing      29
Chazelle, Bernard Marie      96 100
Chirotopes      95
circuits      40
Clarkson, Kenneth Lee      81 100
clauses      20
Cocircuits      45
Cocircular points      82
Cocktail-shaker sort      29—32
Collinear points      4 6 55
Comparators      29
Comparison of algorithms      52
Comparison of keys      62—64
Complement, of a CC system      41
Complement, of a hypertournament      87
Complement, of a point      12
Complement, of a variable      20
Complementary satisfiability      20
complex numbers      70
Composition of CC systems      68
Computer Modern      vii
Convex combinations      4 58
Convex hulls      1 2 45
Convex hulls in 3D      72 89—92
Convex hulls, algorithms for      47 48 52
Convex sets      93
coordinates      56 97
correctness      49 78—79
Cotransitivity      64
Counterclockwise predicate      1 3
Counterclockwise queries      16
Counterclockwise systems      5
Cramer, Gabriel, rule      4 90
Crossovers      34
CSAT problem      20
Cutpaths      38 68 97
Cycles      7 12
Cyclic symmetry      4 25—26
Dag triangulation algorithm      74 92 98
Daghull algorithm      47—51 52 55 67
DAGs      38 47 97
Data structure for triangulations      74 98
Degeneracy      55—61 82—86 94
Delaunay [Delone] triangulations      1 2 69
Delaunay [Delone] triangulations on the sphere      86
Delaunay [Delone] triangulations, algorithm for      73—77
Delaunay [Delone], Boris Nikolaevich      100
Determinant identities      4 5 70 90
Digraphs      7
Directed acyclic graphs      38
Directed graphs      7 19
Divide and conquer      62 97
Dowling, Thomas Allan      103
Dreiding, Andre      95 101
Dress, Andreas      100 101
Dual axioms      5 8 9
Dual hypertournaments      87
Dual matroids      45
Edelman, Paul Henry      35 101
Edelsbrunner, Herbert      96 101
Embedding      10 22 98
Empirical running times      54 81
Enumeration      13 35—40
Enumeration, numerical results      35 87
Eppstein, David Arthur      96 100
Equivalent reflection networks      31
Euclid      1
Extreme points      17 32 39 45 72 98
Fixed-point arithmetic      60 67 85
Fixing a point      43 70 87 93
Flipping a reflection network      34
Flipping edges in a triangulation      77
Floating-point arithmetic      1 56 60 67
Floating-point arithmetic, rigorous use of      86
Floyd, Robert W      29 101
Folkman, Jon      43 44 95 101
FORTRAN      60
Fortune, Steven Jonathon      62 101
Galvin, Frederick William      15 101
Garey, Michael Randolph      20 101
Gatroids      96
Generalized configurations of points      94
Geometric hypertournaments      88 92 95
Gonzales-Sprinberg, Gerard      97 101
Goodman, Jacob Eli      35 40 46 94 96 99 100 101 102
Graham, Ronald Lewis      102
Greene, Curtis      35 101
Gruenbaum, Branko      34 94 98 101 102
Guibas, Leonidas Ioannis      v vi 69 96 97 99 100 102
Gutierrez Novoa, Lino      94 102
Haegi, Hans      101
Halsey, Eric Richard      97 102
Horizon theorems      36 96
Hull insertion algorithm      52—55 66
Hulls      see "Convex hulls"
Hyperoctahedral group      17
Hypertournaments      86—89 95
Ibaraki, Toshihide      102
IEEE standard floating-point      60 61 86
Imai, Hiroshi      102
In-vortex      12
Incircle predicate      1 2 69—71
Incremental algorithms      47 48 52 73 98
Independent axioms      6 71
Independent mutations      29 97
Instruction nodes      48 74
Interior transitivity      8 42
Interior triple systems      9—11
Interiority      4
Intersection of line segments      1
Inversions      24 29
Iverson, Kenneth Eugene, convention      14
Jaggi, Beat      102
Jaromczyk, Jerzy W.      102
Johnson, David Stifler      20 101
Jonassen, Arne      103
Klin, Mikhail H.      97 103
Knuth, Donald Ervin      iii vii 2 3 53 68 97 102 103
Laffaille, Guy      97 100 101
Las Vergnas, Michel      95 96 98 100 103
Lascoux, Alain      35 103
latitude and longitude      86
Lawrence, James Franklin      95 101 103
Lee, Der-Tsai      96 100
Levi, Friedrich Wilhelm Daniel      34 94 96 103
Lexicographic order      57 58 68 97
Li, Zhenyu      103
Linear dependence      41
Linear ordering      10 26 30 56
MacMahon, Major Percy Alexander      14
Mandel, Arnaldo      96 103
Mani-Levitska, Peter      102
Maruani, J.      101
Mates      74
Matousek, Jiri      103
Matroid polytopes      97
Matroids      95
Matroids, oriented      vii 35 40—45 92—93 95—97
Maurer, Hermann      101
MEMS      52
Merge sorting      62—63
Middle arcs      38
Milenkovic, Victor Joseph      103
Milnor, John Willard      40
Moon, John Wesley      15 103
Morris, Alun O.      100
Morris, Ernest      103
Muecke, Ernst Peter      101
Mutations      28—29
N-cubes      17 99
n-gons      11 18 30 32 39 43 46 50 53 79 81 87
n-ordered sets      94
Necklace patterns      14
Negating a point      12 17—19 87
Neighboring      see "Adjacent"
Neighborly matroid polytopes      97
Nishizeki, Takao      102
Nondegeneracy      4
Nonisomorphic systems, enumeration of      13 97
North pole      35 38 72
NOT-ALL-EQUAL 3SAT      20
Notation, $t \in \Delta pqr$      4 58
Notation, $\angle\bar{q}rs$      75
Notation, $\Delta^{2}_{pq}$      70
Notation, $\sqcap pqrs$      9 58
Notation, pqr      1 3
Notation, pqrs      1 69
Notation, |pqrs|      69 90
Notation, |pqr|      3
Nowacki, Werner      104
NP-complete      19
NP-hard      23
O'Rourke, Joseph      96 101
Odd-even transposition sort      29—31 36
Open problems      11 55 63 97—98
Oriented matroids, vii      35 40—45 92—93 95—97
Out-vortex      12
Pach, Janos      102
Pappus of Alexandria, theorem      6
Parallel sweep lines      24—27
Parentheses      36
Parsimonious algorithms      vii 2 62—67 98
Patashnik, Oren      102
Paterson, Michael Stewart      102
Peel, Michael Harry      100
permutations      10 23 24
Perrin, R.      94 104
Perturbations      59—60 82—85
Plassman, Paul Eugene      96 100
Pollack, Richard      35 40 46 94 96 99 100 101 102
Polya, George      97
Postprocessing      55 67
Pre-CC systems      1 11 17 42
Preautomorphisms      18
Preisomorphisms      17 34 35 87 97
Premutations      28—29 97
Preprocessing      16
Preweak equivalence      34
Primitive sorting networks      2 29
Programmer on the street      66
Projective ordering      68
Projective plane      34
Pseudo-disks      98
Pseudo-hemispheres      96
Pseudolines      34—35 94 96
Quad-edge structure      72
Quicksort      51
Randomization      50 61 65 67
Rank      40 86 95
Realizable CC systems      6 29 35 40 60 66 96
Reducible tournaments      15
Reflection networks      29—35 68—69 94
Reorientation equivalence      97
Richter-Gebert [formerly Richter], Juergen      97 99 100 104
Ringel, Gerhard      96 104
Robust algorithms      2 67 85—86
Rockafellar, Ralph Tyrell      95 104
Rounding      60 67
Salesin, David Henry      99 102
SAT (satisfiability) problem      20
Schaefer, Thomas Jerome      20 104
Schuetzenberger, Marcel Paul      35 103
Scope of vertex in a CCC system      80
Scores in tournaments      51 65
Scores, vectors      15 46
Seidel, Raimund      53 96 99 100 101
Semispaces      94 98
Senatus Populusque Romanus      1
serial numbers      61 81 84
Serre, J.      101
Sharir, Micha      101 102
Shemer, Ido      98 104
Shor, Peter Williston      81 100
Signed bijections      17
Signed permutations      17
Signed points      12 16 40
Simple arrangements      34 96
Simplicial chirotopes      95
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте