Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Cheney W. — Analysis for Applied Mathematics
Cheney W. — Analysis for Applied Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Analysis for Applied Mathematics

Автор: Cheney W.

Аннотация:

BLECK:

SIAM REVIEW "The book succeeds well in providing a sound basis in analysis beyond that which most students will have received as undergraduates...Overall, this text serves as a wonderful introduction to 'useful' analysis for new applied mathematicians."

BULLETIN OF MATHEMATICS BOOKS "This text is written with the usual elegance and orderly style that we have come to expect from this author. Topics are presented in a clear and logical manner, and the text is rich with important and interesting content...This text is well worth considering in any program in applied mathematics, and also by anyone seeking a valuable reference in analysis and its applications."

MATHEMATICAL REVIEWS "The author describes this marvelous book as designed for beginning graduate students in mathematics - in particular for those who intend to specialize in applied mathematics, and for graduate students in other disciplines such as engineering, physics and computer science...Those who are familiar with the author's earlier books will not be surprised by its excellence. It is business-like and will be found to be demanding, but it is user-friendly. It is the reviewer's opinion that it will be extremely useful and popular as a text; institutions that do not already require their students to take such a course no longer have an excuse, and should immediately organize one based on this book...The author gives a rigorous discussion of a very large number of topics. Careful definitions and clearly stated theorems are given...The writing in clear and readable throughout, with a pleasant and friendly style...it is the reviewer's view that the author has presented a rich harvest of useful and interesting analysis in a splendid manner."



Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2001

Количество страниц: 456

Добавлена в каталог: 15.02.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Net      364
Neumann Theorem      28 133 186
Neural networks      315
Newton's method      125
Newton, I.      154
Non-differentiable function      13
Non-expansive      19 185
Norm      3
Normal equations      200
Normal operator      100
Nowhere dense      41
Null space      26
o-notation      119
Objective function      243
Open set      17
Order of a distribution      253
Order of a multi-index      247
Ordered vector space      150 152
Orthogonal complement      65
Orthogonal projection      72 74 193
Orthogonal set      64 70
Orthonormal base      73
Orthonormal set      71
Outer measure      382
Paracompactness      345
Parallelogram law      61 62
Partial derivative      117 118 144
Partially ordered set      31 363
Partition of unity      282
Pascal's triangle      268
Picard iteration      181
Plancherel theorem      305ff
Point-evaluation functional      29 193 214
Pointwise convergence      11
Poisson summation formula      298
Poisson's equation      203 210
Polar set      370
Polygonal path      13
Polynomial      261
Positive cone      150 152
Positive sets      418
Pre-Hilbert space      61
Product measures      420ff 425
Product spaces      365
Projection methods      79 191 194
Pseudo-norm      370
Pythagorean Law      62 70
Quadrature      175 219 222
Radial projection      19
Radiative transfer      186
Radon — Nikodym theorem      413ff
Rank of an operator      197
Rapidly decreasing function      294
Rayleigh quotient      149
Rayleigh — Ritz method      166ff 205ff
Reflexive spaces      58
Regular distribution      252
Regular outer measure      389
Relative topology      363
Rellich — Kondrachov theorem      331
Residual set      47
Residual vector      188 229
Residue calculus      315ff
Riemann integral      43
Riemann sum      218
Riemann's theorem      18
Riesz representation theorem      81
Riesz — Fischer theorem      63 411
Riesz's Lemma      22
Rothe's Theorem      338
Saddle point      347
Schauder base      38 204
Schauder — Tychonoff theorem      334
Schur's lemma      56
Schwartz space      294
Selection theorems      339ff
Self-adjoint operator      83
Seminorm      370
Separable kernel      176 357
Separable space      75
Separation theorem      151 342 343
Sigma-algebra      384
Sigma-finite      414
Signed measures      417ff
Similarity      103
Simple function      397
simplex      345
Simpson's rule      223
Sine transform      321
Sine-function      289
Singular-value decomposition      98
Skew-Hermitian operator      101
Snell's law      163
Sobolev spaces      325
Sobolev — Hilbert spaces      332
span      5
Spectral theorem      93
Stable sequence      80
Steepest descent      124 228
Step function      406
Stone — Weierstrass theorem      359
Strictly positive definite functions      315
Sturm — Liouville problems      105ff 203
Subbase for a topology      363
Subsequence      8
Sup norm      3
Support of a distribution      282
Support of a function      247
Supremum      6
Surjective mapping theorem      139 142
Szego's Theorem      44
Tangent      119
Tauber theorem      38
Tempered distributions      321ff
Test function      247
Topological spaces      17 361
Totally ordered set      31
Translation of a distribution      270
Translation operator      38 252 328
Tridiagonal      172
Two-point boundary value problem      171 208ff
Tychonoff theorem      366
Uncertainty principle      310
Uniform boundedness theorem      42
Uniform continuity      16
Uniform convergence      11
Unit ball      7
Unit cell      7
Unitary matrices      104
Unitary operator      101
Upper bound      6 31
Upper semicontinuity      208
Variance of a function      310
Vector space      2
Volterra integral equation      141 182 183 185 189
Weak Cauchy property      88
Weak convergence      53
Weak convergence in Hilbert space      87
Weak topology      368
Weak* topology      368
Weakly complete      57
Weierstrass      11
Weierstrass M-test      373
Weierstrass nondifferentiable function      259ff 374
wronskian      106
Young's Theorem      332
Zarantonello      183
Zermelo — Fraenkel axioms      31
Zorn's lemma      32
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте