Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Lions J-L., Dautray R. — Mathematical Analysis and Numerical Methods for Science and Technology: Volume 2: Functional and Variational Methods
Lions J-L., Dautray R. — Mathematical Analysis and Numerical Methods for Science and Technology: Volume 2: Functional and Variational Methods



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Mathematical Analysis and Numerical Methods for Science and Technology: Volume 2: Functional and Variational Methods

Авторы: Lions J-L., Dautray R.

Аннотация:

These 6 volumes - the result of a 10 year collaboration between the authors, two of France's leading scientists and both distinguished international figures - compile the mathematical knowledge required by researchers in mechanics, physics, engineering, chemistry and other branches of application of mathematics for the theoretical and numerical resolution of physical models on computers. Since the publication in 1924 of the "Methoden der mathematischen Physik" by Courant and Hilbert, there has been no other comprehensive and up-to-date publication presenting the mathematical tools needed in applications of mathematics in directly implementable form. The advent of large computers has in the meantime revolutionised methods of computation and made this gap in the literature intolerable: the objective of the present work is to fill just this gap. Many phenomena in physical mathematics may be modeled by a system of partial differential equations in distributed systems: a model here means a set of equations, which together with given boundary data and, if the phenomenon is evolving in time, initial data, defines the system. The advent of high-speed computers has made it possible for the first time to calculate values from models accurately and rapidly. Researchers and engineers thus have a crucial means of using numerical results to modify and adapt arguments and experiments along the way. Every facet of technical and industrial activity has been affected by these developments. Modeling by distributed systems now also supports work in many areas of physics (plasmas, new materials, astrophysics, geophysics), chemistry and mechanics and is finding increasing use in the life sciences.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2000

Количество страниц: 608

Добавлена в каталог: 12.02.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Operator in Banach or Hilbert spaces, Hermitian, positive definite      353
Operator in Banach or Hilbert spaces, Hilbert — Schmidt      357
Operator in Banach or Hilbert spaces, isometric      355
Operator in Banach or Hilbert spaces, nilpotent      319n
Operator in Banach or Hilbert spaces, nuclear      331
Operator in Banach or Hilbert spaces, orthogonal projection      354
Operator in Banach or Hilbert spaces, partially isometric      356
Operator in Banach or Hilbert spaces, projection      325 355
Operator in Banach or Hilbert spaces, quasi-nilpotent      319
Operator in Banach or Hilbert spaces, restriction      307
Operator in Banach or Hilbert spaces, symmetric      361
Operator in Banach or Hilbert spaces, transpose      322 343
Operator in Banach or Hilbert spaces, unitary      355
Operators (not necessarily bounded) with closed image      346
Operators (not necessarily bounded), accretive      372
Operators (not necessarily bounded), bounded      274
Operators (not necessarily bounded), closable      335
Operators (not necessarily bounded), closed      335 361
Operators (not necessarily bounded), compact      123
Operators (not necessarily bounded), continuous      274
Operators (not necessarily bounded), essentially self-adjoint      336
Operators (not necessarily bounded), invertibility      319
Operators (not necessarily bounded), lifting      110
Operators (not necessarily bounded), maximal symmetric      336
Operators (not necessarily bounded), mutually transposed      309
Operators (not necessarily bounded), normal      366
Operators (not necessarily bounded), sectorial      373
Operators (not necessarily bounded), self-adjoint      362
Operators (not necessarily bounded), transpose      309 343
Operators, linear differential of constant force      245
Operators, linear differential with analytic coefficients      163
Operators, linear differential with constant coefficients      170
Operators, linear differential, $\theta$-strongly elliptic      175
Operators, linear differential, antisymmetric      155
Operators, linear differential, characteristic polynomial of      171
Operators, linear differential, decomposable      190
Operators, linear differential, elliptic      176
Operators, linear differential, formal series associated with      150
Operators, linear differential, hyperbolic      190
Operators, linear differential, hypo-analytic      176 235
Operators, linear differential, hypo-elliptic      177 221
Operators, linear differential, locally finite      149
Operators, linear differential, order of      154
Operators, linear differential, parabolic      202
Operators, linear differential, partial order of      157
Operators, linear differential, principal part of      154
Operators, linear differential, semi-elliptic      247
Operators, linear differential, strictly hyperbolic      196
Operators, linear differential, strongly elliptic      175n 224
Operators, linear differential, symmetric      155
Operators, linear differential, transpose      453
Operators, linear differential, ultra-hyperbolic      201
Operators, linear differential, weakly parabolic      222
Order of a linear differential operator      154
Orthogonal decomposition      119
Orthogonal elements      294
Orthogonal projection of an operator      298 355
Orthogonal projector      298 355
Orthonormal base      300
Orthonormal family      299
Paley — Wiener theorem      505
Paley — Wiener — Schwartz theorem      510
Parabolic boundary      252
Parabolic comparison principle      257
Parabolic maximum principle      252
Parabolic operator      202
Parallelogram identity      293
Parseval's relation      53 301 357 503
Partial Fourier transform      513
Periodic distribution      7
Periodic transform      9n
Plancherel's formula      503
Poincare's constant      127
Poincare's inequality      126 379
Poisson's integral formula      18
Poisson's summation formula      512
Positive definite form      357
Pre-Hilbert space      293
Primitives of a distribution      477
Primitives of the Dirac measure      482
Principal part of a linear differential operator      154
Principle of the strong maximum      251
Principle of the strong parabolic maximum      265
Principle of the weak maximum      259
Principle of uniform boundedness      275
Projection      296 325
Projection operator      355
Projector      355
Propagation of singularities      210
Proper mapping      481
Properly elliptic operator      437
Pseudo functions Pf      471
Quadrature formula      61
Quasi-nilpotent operator      319
Quotient operator      308
Quotient space      308
Radial function      56
Rank of an operator      330
Reduced minimal modulus      342
Reflexivity      286 302
Regularisation      81 104 461
Regularity of solutions of variational problems, global      426 437
Regularity of solutions of variational problems, interior      426
Relatively compact part      327n
Rellich's theorem      123
Resolvent operator      320
Resolvent set      320
Restriction of a distribution      474
Restriction of an operator      307
Riemann — Lebesgue theorem      500n
Riesz representation theorem      302
Riesz — Frechet theorem      302n
Robin's problem      400 448
Salient cone      189
Saltus      470
Scalar product      291
Scalar product on a Hilbert space      293
Scalar product, Hermitian      291
Schauder spaces      3
Schauder's theorem      329
Scheme with five points      88
Scheme with three points      84
Schmidt's orthonormalisation method      300
Schrodinger operator      180 192
Schwartz's proposition      526
Schwartz's theorem of kernels      528
Sectorial operators      373
Self-adjoint operator      351n
Semi-ball      271
Semi-groups      225
Semi-norm      270
Sesquilinear form      292 351 367
Sesquilinear form, adjoint      353
Sesquilinear form, non-degenerate      292
Sesquilinear form, non-negative      293
Sesquilinear form, positive definite      292
Sesquilinear form, uniformly strongly elliptic      389
Sobolev spaces      92 138
Sobolev spaces with weights      141
Sobolev spaces, density theorems      102
Sobolev spaces, trace theorems      113 140
Sobolev's embedding theorem      100
Sobolev's inclusion      131
Sobolev's injections      139
Space of bounded operators      310
Space of distributions      463
Space of tempered distributions      507
Space of test functions      457
Space of traces      22
Space, Banach      272
Space, complete metric      272
Space, energy      269
Space, Frechet      272
Space, Hilbert      291
Space, locally convex topological      271
Space, metric      272
Space, metrisable      272n
Space, normed vector      272
Space, pre-Hilbert      291
Space, reflexive normed      286
Space, Schauder      3
Space, separable      283 300
Space, separated topological      271
Space, Sobolev      92
Spectral radius      319
Spectrum of an operator      84 320
Speed of propagation      215
Statical problems of elasticity      411
Stirling's formula      234n
Strong convergence      287
Strong maximum principle      263
Strong parabolic maximum      265
Sub-critical medium      405
Subharmonic function      251
Sum of operators      307
Summability      15
Support cone of an elementary solution      189
Support of a distribution      474
Surjection      539
Surjective map      539
Table of Fourier transforms of distributions      532
Table of Hankel transforms      57
Table of Mellin transforms      40
Tchebycheff polynomials      81
Tempered distributions      184 507
Tensor product of two distributions      480
Tensor product of two functions      480
Test functions      457
Topological supplement      326
Topological vector space      270
Total family      300
Totally bounded set      328n
Trace map      108
Traces of Sobolev spaces      113
Transform, bilateral Laplace      25
Transform, discrete Fourier      59
Transform, fast Fourier      64
Transform, Fourier      2
Transform, Hankel      2 40
Transform, Laplace      2
Transform, Mellin      2 24
Transformation to the left      306
Transformation to the right      306
Transformation, Cooley — Tukey      64
Transformation, Good — Winograd      66
Transmission conditions      401
Transmission problem      400
Transpose of a linear differential operator      153
Transpose of an operator in Banach or Hilbert space      343
Truncation      103 461
Uniform boundedness      275
Uniform derivative      332
Unitary operator      355
Variation of a function      478n
Variation of parameters      479
Vector space      270
Virtual power      412
von Neumann's theorems      362
Wave front set      211n
Wave operator      180
Weak compactness      289
Weak convergence      287
Weak derivative      332
Weak differentiability      304
Weak holomorphy      305 333
Weak maximum principle      259
Weak topology      304
Weak-star convergence      290
Weakly parabolic operator      221
Weight function      242
Weighted Sobolev space      141
Well-posed Cauchy problem      214 217
Young's inequality      459
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте