Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Rosenhouse J. — The Monty Hall Problem: The Remarkable Story of Math's Most Contentious Brain Teaser
Rosenhouse J. — The Monty Hall Problem: The Remarkable Story of Math's Most Contentious Brain Teaser



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: The Monty Hall Problem: The Remarkable Story of Math's Most Contentious Brain Teaser

Автор: Rosenhouse J.

Аннотация:

"Let's Make a Deal," with its popular host Monty Hall, was a staple of 1970s game shows, with squirming contestants trying to guess which of three doors concealed the grand prize. The contestant chooses a door, but does not open it. Monty opens a different door, always empty. The contestant faces a choice: stick with his original door or switch to the remaining door?

This mindbender is known as "the Monty Hall Problem," the subject of Jason Rosenhouse's witty new book. Rosenhouse, associate professor of mathematics at James Madison University, examines the problem from multiple angles, lucidly explaining why, though counterintuitive, the best choice is to switch doors.

//The Monty Hall Problem// is sure to elicit emotional responses — as the conundrum itself has for years among mathematicians, philosophers, physicists, and others. Rosenhouse acknowledges the provocative nature of the problem and faces it head on, thoroughly and convincingly explaining the math and logic of the problem and addressing several variations.

Although Rosenhouse's enthusiasm for the subject is infectious, readers whose education ended with Math 101 may find much of this book beyond reach, as it is thick with equations. But for those who aren't arithmophobes, //The Monty Hall Problem// is delightfully challenging.

Reviewed by Kelli Christiansen


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2009

Количество страниц: 207

Добавлена в каталог: 08.02.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Never-never land      139
New Year’s      6
New York      8
Newman, Paul      2
Newtonian mechanics      84
Nickerson, Raymond      147-48
Non-arbitrariness      170 172
Nucleus      127
Numerator      43
Objective probability      86
Ordered pairs      4 45 58
Ordered triples      47 61 63 169
Oxford University      23
Page, Scott      137
Palacios — Huerta, I.      152
Paradis, J.      112
Paradox      10 19 137 139 143 171-72
Partial derivative      111
Partition-edit-count      152
Pascal, Blaise      9-12
Pascal’s triangle      11
Pearl, Judea      151
Peirce, Charles Sanders      16
Persian Gulf      31
PHD      2-3 25 29
Philosopher(s)      viii 31 87 128 133 151 155 164-65 177
Physicist(s)      31 87 126-28 133
Piatelli — Palmarini, Massimo      31
Platters, silver      139
Possible outcomes      43-44 85
Posterior probability      see Bayes’ Theorem
Posterior uniformity      144
Prime number      46
Principle of non-arbitrariness      170-72
Prior probability      see Bayes’ Theorem
Prior uncertainty      104
Prisoners problem      see Three prisoners problem
Probabilistic weather forecasts      8
Probability calculations      37 43
probability distribution      vii 44-46 49 50 55 59-63 122
Probability space      44 70 105
Probability theory, as an abstract construction      85
Probability theory, basics of      42-45 52
Probability theory, counterintuitive nature of      5-9 12
Probability theory, ecumenical view of      88
Probability theory, epistemic vs. statistical notions of      156-65
Probability theory, event, definition of      44
Probability theory, evidence and      7 14
Probability theory, exercises in      31
Probability theory, experiments in      4 28 40 58-59 64 85 87 122
Probability theory, history of      8-15
Probability theory, illustrating difficulty of      4-5
Probability theory, independence and      4 58-61 63 102 105
Probability theory, interpretations of      84-88
Probability theory, measures in      85
Probability theory, product rule and      6 60 63
Probability theory, reasoning about      viii 5 9
Probability theory, single/individual cases and      160 164-65
Probability theory, sum rule and      viii 4 44-45
Probability theory, textbooks on      85 121 139
Probability tree      53 76 131 169
Problem of points      10-12
Progressive Monty Hall problem, arbitrariness of door-numbering and      108
Progressive Monty Hall problem, basic principles of      98-101
Progressive Monty Hall problem, five-door case study of      95-101
Progressive Monty Hall problem, four-door version of      90-92 100
Progressive Monty Hall problem, information theory and      see Information theory
Progressive Monty Hall problem, Monty’s limitations and      89
Progressive Monty Hall problem, other switching strategies and      107-11
Progressive Monty Hall problem, probability vector and      96-99 101-2
Progressive Monty Hall problem, statement of      89
Progressive Monty Hall problem, switching at the last minute and      90 92-94
Progressive Monty Hall problem, switching every time and      92 105-7
Progressive Monty Hall problem, switching exactly $k$ times and      109-11
Progressive Monty Hall problem, unique optimality of SLM and      101-4 112
Proportionality principle      82-84 117 138 168-69
Prozac      9
Psychologists      viii 7 41 87 128
PubMed database      133
Quantum information      see Quantum mechanics Monty
Quantum mechanics, irrational probabilities and      87
Quantum mechanics, Monty Hall problem and      viii 126-28
Quantum mechanics, weirdness of      128
Quintuple      96
Radioactive      127
Random Monty      114
Random number generator      49
Random variables      viii 122-23 162
Rao, M. Bhaskara      89
ratio      83 85 102 117 120-21 143
Rational number      43 87 96
Real numbers      85
Real-world situation      44 49 60
Recurrence relations      ix 106-12
Refrigerators      123-124
Relative frequency      64 87 121
Risk and reward      81
Rolling dice      see Dice rolling
Rosenthal, Jeffrey      8 82-83
RRD-gnostic/agnostic condition      41
Russell, Bertrand      10
Sample space, definition of      44
Sample space, enumerating the elements of      10 11 18 21 27 45-46 52 58 66-67 89
Sample space, probability theory and      vii 50 122
Sample space, subsets of      44 59
Sample space, two-child problem and      139-40
Scalpel      145
Scheherazade      39
Search engines      133
Self-information      105
Selvin, Steve      20-22
Sensory capacity      133
September      6
SEQUENCE      126
Sexually ambiguous children      148
Shannon, Claude      viii 104-5
Shell game      27 144
Shimojo, S.      141-45
Single-case probability      see Probability theory single/individual
Skarsgard, Stellan      2
Sledgehammer      145
Slembeck, T.      152
Smith, John Maynard      18
Smullyan, Raymond      39-40
Some Teasers Concerning Conditional Probability      137
Spivey — Knowlton, M.      149 151
Sprenger, Jan      170 174
Stanford University      23
Statistical probability      see Probability theory statistical
Statisticians      31 87 140
Sticking argument/strategy      2-3 36 40 49-52 79 115 123-24 159 171
Stock, share of      136
Subatomic particle      127
Subjective probability      86 156
Subjective theorems      141-44 152
Sugar      71
Superposition of states      127-28
Supporters of switching      40
Surviving player      115-16
Sweden      146
Switching argument/strategy      2-3 36 38 48-52 75-76 80 159
Symmetry heuristic      145
System, physical      127
Takeichi, H.      148
Telegraph      105
Television      19 80 158
Textbooks, probability theory      see Probability theory textbooks
Theorem      85 110 112 142-43
Theoretical probability      50-51 64
Three prisoners problem      17-18 138 141-43 145
Three — Obsessed Monty      116-18
Todhunter, Isaac      13
Tossing coins      see Coin tossing
Trial and error      134
Tubau, E.      152
Two-ace problem      4 40
Two-child problem      138-40
Two-puppy problem      26
Tyran, J.      152
U. S. Department of Transportation      71
U. S. Open      22
Undergraduate course      12
Uniform distribution      59
Uniformity assumption      145
United States      146
Updated probability      70 82-84 94 101-2 117 139
Venn diagram      10
Venn, John      10
Ventoulias, A.      112
Verschueren, N.      152
Viader, P.      112
Vos Savant, Marilyn      vii 23-31 130-31 141 144
Wang, X.T.      152
War (card game)      129
Whitaker, Craig      23
Wieth, Mareike      135 151
Wikipedia      52 113
Working memory capacity      153
Yale University      175
Zabell, Sandy      22
“And Behind Door Number One, a Fatal Flaw”      175
“Constant Ratio” theorem      142-43
“Essay Toward Solving a Problem in the Doctrine of Chances, An”      12
“Irrelevant, Therefore Invariant” theorem      142-43
“Number of Cases” theorem      142-43
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте