Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics
Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Applied Functional Analysis: Applications to Mathematical Physics

Автор: Zeidler E.

Аннотация:

This is a incredible book on applied functional analyses. Every topic is motivated with an applied problem. The definitions are motivated either by the aplication or by the subsequent use. There are remainders showing you the inteconections between the subjects and finally the index and the Symbols index are both complete and very usefull. The book is not complete. However he missing subjects usually are in the other colection by the same author.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1995

Количество страниц: 509

Добавлена в каталог: 04.02.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Theorem 1.D, the Leray — Schauder principle      65
Theorem 1.E, the method of sub- and supersolutions      69
Theorem 2.A, main theorem on quadratic minimum problems      121
Theorem 2.B, the Dirichlet principle      138
Theorem 2.C, the Ritz method      141
Theorem 2.D, the perpendicular principle      165
Theorem 2.E, the Riesz theorem      167
Theorem 2.F, dual quadratic variational problems      170
Theorem 2.G, nonlinear monotone operators      173
Theorem 2.H, the nonlinear Lax — Milgram theorem      175
Theorem 3.A, complete orthonormal systems      202
Theorem 4.A, eigenvalues and eigenvectors of linear, symmetric, compact operators      232
Theorem 4.B, the Fredholm alternative for linear, symmetric, compact operators      237
Theorem 5.A, the Friedrichs extension of symmetric operators      280
Theorem 5.B, the abstract Dirichlet problem      282
Theorem 5.C, the eigenvalue problem      284
Theorem 5.D, the Fredholm alternative      306
Theorem 5.E, the abstract heat equation      310
Theorem 5.F, the abstract wave equation      310
Theorem 5.G, the abstract Schroedinger equation      323
Thermodynamic equilibrium      360
Thermodynamical quantities      353
Time evolution      329
Time evolution of quantum systems      330
Time-dependent processes in nature      298
Time-dependent scattering theory      398
Time-independent scattering theory      404
Tonelli's theorem      439
Total energy      321 336
Totally ordered      442
tr, trace of the linear operator A in a Hilbert space      347
Trace class operators      347 421
Transformation rule for integrals      435
Transition amplitude      397
Transition probabilities      397
Trefftz method      170
Triangle inequality      7
Triangulation      49
Trigonometric polynomials      204 206
Two-soliton solutions      407
U(p), neighborhood of the point p      15
Unbounded operator      300
Unbounded orbits      421
Uncertainty inequality      330
Uncertainty principle      343
Uniformly continuous      27
Uniformly continuous one-parameter group      299
Uniqueness implies existence      237
Unitary operator      212 219 272 330
Variational equation      140
Variational lemma      117
Variational problem      125 140 281 287
Vertices      46
Vibrating string      315
Volterra integral operator      95
Volume potential      183
von Neumann algebra      359
Wave equation      182 185 309
Wave operators      369
Waves      406
Weierstrass approximation theorem      84
Weierstrass classical counterexample      176
Weierstrass theorem      37
White dwarfs      357
Wiener path integral      381 386
X*, dual space      75
Zorn's lemma      442
|x|, Euclidean norm, $|x|:=<x|x>^{\frac{1}{2}} = (\sum\limits_{n=1}^{N}|x_{n}|^{2})^{\frac{1}{2}}$      109
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте