Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Allen A. — Probability, statistics, and queueing theory with computer science applications
Allen A. — Probability, statistics, and queueing theory with computer science applications



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Probability, statistics, and queueing theory with computer science applications

Автор: Allen A.

Аннотация:

This is a textbook on applied probability and statistics with computer science applications for students at the upper undergraduate level. It may also be used as a self study book for the practicing computer science professional. The successful first edition of this book proved extremely useful to students who need to use probability, statistics and queueing theory to solve problems in other fields, such as engineering, physics, operations research, and management science. The book has also been successfully used for courses in queueing theory for operations research students. This second edition includes a new chapter on regression as well as more than twice as many exercises at the end of each chapter. While the emphasis is the same as in the first edition, this new book makes more extensive use of available personal computer software, such as Minitab and Mathematica.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2-nd edition

Год издания: 1990

Количество страниц: 763

Добавлена в каталог: 02.02.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Median      459
Memory less property      see "Markov property"
Method of moments estimation      see "Estimators"
mips      467
MODE      459
Moment generating function (z-transform)      67—69
Moment of a random variable      44—45
Moment, sample      436
Montmort's problem      93
MSE (mean squared error, also called residual mean square)      567
MTTF (mean time to failure)      218
MTTR (mean time to repair)      217
Muir, John      459
Multiclass models, closed      410—414
Multiclass models, mixed      415—417
Multiclass models, open      409—410
Multiplication principle      21
Multiplication rule      25
Multiplication rule, general      25
Myriad      395
Namath, Joe      504
Nonparametric tests      539—545
Normal random variables      see "Continuous probability distributions"
Norton, Peter      465 466
Null hypothesis      484
o(h)      202—203
Odds      19—20
Odds, against      19
Odds, for      19
One-sided inequality      see "Inequalities"
Outlier      459 580
Parker, Dorothy      335
Parzen, Emanuel      225 229 230 231
Pasteur, Louis      485
Pattern recognition      457
Percentile value      124 460
Permutation      20
pmf      see "Probability mass function"
Pogo      501
Poincare's Formula      81
Poisson arrival pattern      254—255
Poisson process      204—208
Poisson random variables      see "Discrete probability distributions"
Poker      88—90
Pollaczek — Khintchine formula      307
Pollaczek — Khintchine transformation      309
Pollaczek's formula      see "Pollaczek — Khintchine formula"
polling      23 64—65
Polya, George      474
Population      249 254 430
Power of a test      489
Predicted (fitted) value      566
Predicted (fitted) value, interval estimate of      578—579
Predictor variable      557
Predictor variable, selection of      600—606
Priority queueing system      325—336
Priority queueing system, HOL (head-of-the-line priority queueing system)      328
Priority queueing system, M/G/1      326—331
Priority queueing system, M/G/1 processor-sharing (PS)      331—334
Priority queueing system, multiserver      334—335
Priority queueing system, preemptive-resume      328
probability      15—16 see
Probability density function      see "Density function"
Probability distribution function      see "Distribution function"
Probability distributions      see "Continuous probability distributions" "Discrete
Probability mass function (pmf)      36
Probability measures      15—20
Probability measures, axioms of a probability measure      16
Probability theory      9—86
Probability theory, basic concepts      10
Probability theory, event      see "Event"
Probability theory, sample space      10
Probability, posterior      29
Probability, prior      29
Proportion, true, of population      447
Pure-birth process      211
Pure-death process      211
Queue discipline      256
Queue discipline, BIFO      325
Queue discipline, FCFS      256 325
Queue discipline, FISH      325
Queue discipline, LCFS      256 325
Queue discipline, WINO      325
Queueing network, BCMP      400—417
Queueing network, closed      378
Queueing network, finite population      381—382
Queueing network, finite processor-sharing      385—386
Queueing network, Jackson      378 386—400
Queueing network, machine repair      382—385
Queueing network, open machine repair      397—399
Queueing network, product form      378
Queueing network, separable (same as product form)      378
Queueing systems, birth-and-death process      261—301
Queueing systems, describing a      251—261
Queueing systems, embedded Markov chain      301—324
Queueing systems, multiserver      256
Queueing systems, networks of queues      325—336
Queueing systems, priority      325—326
Queueing systems, single-server      256
Queueing systems, steady-state      253
Queueing theory      247—342
Queueing theory, approximations      336 340—342
Queueing theory, arrival pattern      254—255
Queueing theory, bounds      337 338—340
Random arrival pattern      see "Poisson arrival pattern"
Random variables      34—40
Random variables, dependent      50
Random variables, jointly distributed      46—60
Random variables, moment of      44
Random variables, parameters of      40—46
Random, experiment      10
Random, sample      430
Random, walk      226
Realization, (sample path)      200—201
Regression, estimation of parameters      558—567
Regression, multiple linear      588—610
Regression, nonlinear      584—587
Regression, polynomial      604—610
Regression, simple linear      557—584
Regression, through the origin      5813—584
Reisser, Martin      386 391
Renewal process      234—238
Renewal process, Poisson      236—237
Reproductive property      59
Residual      564
Residual, standardized      579
Residual, studentized      580
Roosevelt, Theodore      431 547
Runyon, Damon      458
Sample spaces      10
Sampling theorem      432
Saturated      380
Saturation number      385
Scatter diagram      558 559
server      249
Server, utilization, $\rho$      258
Service demand      379
Service discipline      see "Queueing discipline"
Service time      255
Shelley, Percy Bysshe      208
Sign test      540—544
Significance, level of      486
Significant      490
Skewed      461—462
skewness      461
Skewness, coefficient of      461
Snedecor and Cochran      459 461 576
Squared coefficient of variation, $C_{X}^{2}$      45 255 460
SSE (error sum of squares)      536 566 569 594
SSR (regression sum of squares)      570 571 594
SST (sum of squares for treatment)      534
SST (total sum of squares)      569 594
Standard deviation, sample      431
Standard error      433
Standard error of regression      568
standard error of the estimate      568
Standard statistical model      559 590
State space (for stochastic process), continuous parameter      200
State space (for stochastic process), discrete parameter      200
State space (for stochastic process), probability distribution of      228
State space (for stochastic process), transition probability      220
State, absorbing      217
State, equilibrium      229
State, recurrent      226—227
State, recurrent nonnull (positive recurrent)      227—228
State, recurrent null      226—227
State, steady      229
State, transient      226
Stem-and-leaf plot      456—458
Stochastic process      199—200
Stochastic process, index set      200
Student's t random variables      see "Continuous probability distributions"
Sturges' rule      451
Takacs recurrence theorem      310
Teller, Edward      555
Test, sensitivity      30
Test, specificity      30
Tests of means      489—501
Tests of means, one-sample      491—494
Tests of means, two-sample      494—501
Tests of proportions (Bernoulli test), one-sample      506—510
Tests of proportions (Bernoulli test), two-sample      510—514
Tests of variance      501—506
Tests of variance, one-sample      502—504
Tests of variance, two-sample      504—506
Think time      381
Thomas, Lewis      9
Thoreau, Henry David      34
Thurber, James      510
Transform methods      67—76 164—177
Transition probability matrix      222
Tucker, Sophie      67
Twain, Mark      164 506 544
Type I, II, III, and IV errors      488—489
Unbiased      433
Uncorrelated      51
Uniform random variables, continuous      see "Continuous probability distributions"
Uniform random variables, discrete      see "Discrete probability distributions"
Uniformly most powerful test      490
Variance      42 51—52
Variance, sample      431
Venn diagram      13
Weak law of large numbers      84—85
Whitt, Ward      151—152
Workload      378
Workload, batch      378—379
Workload, terminal      378
Workload, transaction      378—379
Yates' adjustment      see "Continuity correction"
Yates' correction      see "Continuity correction"
Youden, W.J.      135
z-transform      see "Generating function"
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте