Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Mitchell T.M. — Machine Learning
Mitchell T.M. — Machine Learning



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Machine Learning

Àâòîð: Mitchell T.M.

Àííîòàöèÿ:

This book covers the field of machine learning, which is the study of algorithms that allow computer programs to automatically improve through experience. The book is intended to support upper level undergraduate and introductory level graduate courses in machine learning


ßçûê: en

Ðóáðèêà: Òåõíîëîãèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1997

Êîëè÷åñòâî ñòðàíèö: 432

Äîáàâëåíà â êàòàëîã: 21.06.2006

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
$TD(\lambda)$      383—384 387
$\theta$-subsumption      302
$\theta$-subsumption, relationship with entailment and more_general_than partial ordering      299—300
Absorbing state      371
ABSTRIPS      329
Acyclic neural networks      See "Multilayer feedforward networks"
Adaline rule      See "Delta rule"
Additive Chernoff bounds      210—211
Adelines      123
Agents in reinforcement learning      368
Agnostic learning      210—211 225
ALVINN system      82—84
Analytical learning      307—330
Analytical learning, inductive learning, comparison with      310 328—329 334—336 362
Analytical-inductive learning      See "Inductive-analytical learning"
ANN learning      See "Neural network learning"
ANNs      See "Neural networks artificial"
Antecedents of Horn clause      285
AQ algorithm      279—280
AQ14 algorithm, comparison with GABIL      256 258
Arbitrary functions, representation by feedforward networks      105—106
Artificial intelligence, influence on machine learning      4
Artificial Neural Networks      See "Neural networks artificial"
Assistant      77
Astronomical structures, machine learning classification of      3
Attributes, choice of, in sequential vs. simultaneous covering algorithms      280—281
Attributes, continuous-valued      72—73
Attributes, cost-sensitive measures      75—76
Attributes, discrete-valued      72
Attributes, measures for selection of      73—74 77
Attributes, missing values, strategies for      75
Autonomous vehicles      3 4 82—84
Average reward      371
Backgammon learning program      See "TD-Gammon"
Backpropagation algorithm      83 97 124
Backpropagation algorithm in Q learning      384
Backpropagation algorithm, applications of      81 84 85 96 113
Backpropagation algorithm, convergence and local minima      104—105
Backpropagation algorithm, definition of      98
Backpropagation algorithm, discovery of hidden layer representations      106—109 123
Backpropagation algorithm, feedforward networks as hypothesis space      105—106
Backpropagation algorithm, gradient descent search      89 115—116 123
Backpropagation algorithm, inductive bias of      106
Backpropagation algorithm, KBANN algorithm, comparison with      344—345
Backpropagation algorithm, KBANN algorithm, use in      339
Backpropagation algorithm, momentum, addition of      100 104
Backpropagation algorithm, overfitting in      108 110—111
Backpropagation algorithm, search of hypothesis space      97 106 122—123
Backpropagation algorithm, search of hypothesis space by genetic algorithms, comparison with      259
Backpropagation algorithm, search of hypothesis space by KBANN and TangentProp algorithms, comparison with      350—351
Backpropagation algorithm, search of hypothesis space in decision tree learning, comparison with      106
Backpropagation algorithm, stochastic gradient descent version      98—100 104—105 107—108
Backpropagation algorithm, TangentProp algorithm, comparison with      349
Backpropagation algorithm, weight update rule for hidden unit weights      103
Backpropagation algorithm, weight update rule for output unit weights      102—103 171
Backpropagation algorithm, weight update rule in KBANN algorithm      343—344
Backpropagation algorithm, weight update rule, alternative error functions      117—118
Backpropagation algorithm, weight update rule, derivation of      101—102
Backpropagation algorithm, weight update rule, optimization methods      119
Backtracking, ID3 algorithm and      62
Backward chaining search for explanation generation      314
Baldwin effect      250 267
Baldwin effect, computational models for      267—268
Bayes classifier, naive      See "Naive Bayes classifier"
Bayes optimal classifier      174—176 197 222
Bayes optimal classifier, learning Boolean concepts using version spaces      176
Bayes optimal learner      See "Bayes optimal classifier"
Bayes rule      See "Bayes theorem"
Bayes theorem      4 156—159
Bayes theorem in Brute-Force MAP Learning algorithm      160—162
Bayes theorem in inductive-analytical learning      338
Bayes theorem, concept learning and      158—163
Bayesian belief networks      184—191
Bayesian belief networks, choice among alternative networks      190
Bayesian belief networks, conditional independence in      185
Bayesian belief networks, constraint-based approaches in      191
Bayesian belief networks, gradient ascent search in      188—190
Bayesian belief networks, inference methods      187—188
Bayesian belief networks, joint probability distribution representation      185—187
Bayesian belief networks, learning from training data      188—191
Bayesian belief networks, naive Bayes classifier, comparison with      186
Bayesian belief networks, representation of causal knowledge      187
Bayesian classifiers      198 See "Naive
Bayesian learning      154—198
Bayesian learning, decision tree learning, comparison with      198
Bayesian methods, influence on machine learning      4
Beam search, general-to-specific      See "General-to-specific beam search"
Beam search, generate-and-test      See "Generate-and-test beam search"
Bellman residual errors      385
Bellman — Ford shortest path algorithm      386 387
Bellman's equation      385—386
BFS-ID3 algorithm      63
Binomial distribution      133—137 143 151
Biological evolution      249 250 266—267
Biological neural networks, comparison with artificial neural networks      82
Bit strings      252—253 258—259 269
Blocks, stacking of      See "Stacking problems"
Body of Horn clause      285
Boolean conjunctions, PAC learning of      211—212
Boolean functions, representation by feedforward networks      105—106
Boolean functions, representation by perceptrons      87—88
Boundary set representation for version spaces      31—36
Boundary set representation for version spaces, definition of      31
Bounds, one-sided      141 144
Bounds, two-sided      141
Brain, neural activity in      82
Breadth first search in ID3 algorithm      63
Brute-Force MAP Learning algorithm      159—162
Brute-Force MAP Learning algorithm, Bayes theorem in      160—162
C4.5 algorithm      55 77
C4.5 algorithm, GABIL, comparison with      256 258
C4.5 algorithm, missing attribute values, method for handling      75
C4.5 algorithm, rule post-pruning in      71—72
CADET system      241—244
Candidate specializations, generated by FOCL algorithm      357—361
Candidate specializations, generated by FOIL algorithm      287—288 357—358
Candidate-Elimination algorithm      29—37 45—47
Candidate-Elimination algorithm, applications of      29 302
Candidate-Elimination algorithm, Bayesian interpretation of      163
Candidate-Elimination algorithm, computation of version spaces      32—36
Candidate-Elimination algorithm, computation of version spaces, definition of      33
Candidate-Elimination algorithm, ID3 algorithm, comparison with      61—64
Candidate-Elimination algorithm, inductive bias of      43—46 63—64
Candidate-Elimination algorithm, limitations of      29 37 41 42 46
Candidate-Elimination algorithm, search of hypothesis space      64
CART system      77
Cascade-Correlation algorithm      121—123
Case-based reasoning      231 240—244 246 247
Case-based reasoning, advantages of      243—244
Case-based reasoning, applications of      240
Case-based reasoning, other instance-based learning methods, comparison with      240
Causal knowledge, representation by Bayesian belief networks      187
Central limit theorem      133 142—143 167
Checkers learning program      2—3 5—14 387
Checkers learning program as sequential control process      369
Checkers learning program, algorithms for      14
Checkers learning program, design      13
Chemical mass spectroscopy, Candidate-Elimination algorithm in      29
Chess learning program      308—310
Chess learning program, explanation-based learning in      325
chunking      327 330
Cigol      302
Circuit design, genetic programming in      265—266
Circuit layout, genetic algorithms in      256
Classification problems      54
Classify_naive_Bayes_text      182—183
CLAUDIEN      302
clauses      284 285
CLS      See "Concept Learning System"
Clustering      191
CN2 algorithm      278 301
CN2 algorithm, choice of attribute-pairs in      280—281
Complexity, sample      See "Sample complexity"
Computational complexity      202
Computational complexity theory, influence on machine learning      4
Computational learning theory      201—227
Concept learning      20—47
Concept Learning System      77
Concept learning, algorithms for      47
Concept learning, Bayes theorem and      158—163
Concept learning, definition of      21
Concept learning, genetic algorithms in      256
Concept learning, ID3 algorithm specialized for      56
Concept learning, notation for      22—23
Concept learning, search of hypothesis space      23—25 46—47
Concept learning, task design in      21—22
Concepts, partially learned      38—39
Conditional independence      185
Conditional independence in Bayesian belief networks      186—187
confidence intervals      133 138—141 150 151
Confidence intervals for discrete-valued hypotheses      131—132 140—141
Confidence intervals for discrete-valued hypotheses, derivation of      142—143
Confidence intervals, one-sided      144 145
Conjugate gradient method      119
Conjunction of boolean literals, PAC learning of      211—212
Consequent of Horn clause      285
Consistent learners      162—163
Consistent learners, bound on sample complexity      207—210 225
Consistent learners, bound on sample complexity, equation for      209
Constants in logic      284 285
Constraint-based approaches in Bayesian belief networks      191
Constructive induction      292
Continuous functions, representation by feedforward networks      105—106
Continuous-valued hypotheses, training error of      89—90
Continuous-valued target function      197
Continuous-valued target function, maximum likelihood (ML) hypothesis for      164—167
Control theory, influence on machine learning      4
Convergence of Q learning algorithm in deterministic environments      377—380 386
Convergence of Q learning algorithm in nondeterministic environments      382—383 386
Credit assignment      5
Critic      12 13
Cross entropy      170
Cross entropy, minimization of      118
Cross-validation      111—112
Cross-validation for comparison of learning algorithms      145—151
Cross-validation in k-Nearest Neighbor algorithm      235
Cross-validation in neural network learning      111—112
Cross-validation, k-fold      See "k-fold cross-validation"
Cross-validation, leave-one-out      235
Crossover mask      254
Crossover operators      252—254 261 262
Crossover operators, single-point      254 261
Crossover operators, two-point      254 257—258
Crossover operators, uniform      255
Crowding      259
Cumulative reward      371
Curse of dimensionality      235
Data Mining      17
Decision tree learning      52—77
Decision tree learning, algorithms for      55 77 See "ID3
Decision tree learning, applications of      54
Decision tree learning, Bayesian learning, comparison with      198
Decision tree learning, impact of pruning on accuracy      128—129
Decision tree learning, inductive bias in      63—66
Decision tree learning, k-Nearest Neighbor algorithm, comparison with      235
Decision tree learning, Minimum Description Length principle in      173—174
Decision tree learning, neural network learning, comparison with      85
Decision tree learning, overfitting in      67—69 76—77 111
Decision tree learning, post-pruning in      68—69 77
Decision tree learning, reduced-error pruning in      69—71
Decision tree learning, rule post-pruning in      71—72 281
Decision tree learning, search of hypothesis space      60—62
Decision tree learning, search of hypothesis space by Backpropagation algorithm, comparison with      106
Deductive learning      321—322
Degrees of freedom      147
Delayed learning methods, comparison with eager learning      244—245
Delayed reward in reinforcement learning      369
Delta rule      11 88—90 94 99 123
Demes      268
Determinations      325
Deterministic environments, Q learning algorithm for      375
Directed acyclic neural networks      See "Multilayer feedforward networks"
Discounted cumulative reward      371
Discrete-valued hypotheses, confidence intervals for      131—132 140—141
Discrete-valued hypotheses, confidence intervals for, derivation of      142—143
Discrete-valued hypotheses, training error of      205
Discrete-valued target functions, approximation by decision tree learning      52
Disjunctive sets of rules, learning by sequential covering algorithms      275—276
Distance-weighted k-Nearest Neighbor algorithm      233—234
Domain theory      310 329 See "Perfect "Prior
Domain theory as KBANN neural network      342—343
Domain theory in analytical learning      311—312
Domain theory in Prolog-EBG      322
Domain theory, weighting of components in EBNN      351—352
Domain-independent learning algorithms      336
Dyna      380
Dynamic programming, applications to reinforcement learning      380
Dynamic programming, reinforcement learning and      385—387
Eager learning methods, comparison with lazy learning      244—245
EBG algorithm      313
EBNN algorithm      351—356 362 387
EBNN algorithm, other explanation-based learning methods, comparison with      356
EBNN algorithm, prior knowledge and gradient descent in      339
EBNN algorithm, TangentProp algorithm in      353
EBNN algorithm, weighting of inductive-analytical components in      355 362
EGGS algorithm      313
EM algorithm      190—196 197
EM algorithm, applications of      191 194
EM algorithm, derivation of algorithm for k-means      195—196
EM algorithm, search for maximum likelihood (ML) hypothesis      194—195
Entailment      321n
Entailment, relationship with $\theta$-subsumption and more_general_than partial ordering      299—300
entropy      55—57 282
Entropy of optimal code      172n
Environment in reinforcement learning      368
Equivalent sample size      179—180
Error bars for discrete-valued hypotheses      See "Confidence intervals for discrete-valued hypotheses"
Error of hypotheses, sample      See "Sample error"
Error of hypotheses, training      See "Training error"
Error of hypotheses, true      See "True error"
Estimation bias      133 137—138 151
Estimator      133 137—138 143 150—151
Evolution of populations in genetic algorithms      260—262
Evolution of populations, argument for Occam's razor      66
Evolutionary computation      250 262
Evolutionary computation, applications of      269
Example-driven search, comparison with generate-and-test beam search      281
Expected value      133 136
Experiment generator      12—13
Explanation-based learning      312—330
Explanation-based learning, applications of      325—328
Explanation-based learning, derivation of new features      320—321
Explanation-based learning, inductive bias in      322—323
Explanation-based learning, inductive learning and      330
Explanation-based learning, lazy methods in      328
Explanation-based learning, limitations of      308 329
Explanation-based learning, prior knowledge in      308—309
Explanation-based learning, reinforcement learning and      330
Explanation-based learning, utility analysis in      327—328
Explanations generated by backward chaining search      314
Explicit prior knowledge      329
Exploration in reinforcement learning      369
Face recognition      17
Face recognition, Backpropagation algorithm in      81 112—117
Feedforward networks      See "Multilayer feedforward networks"
Find-S algorithm      26—28 46
Find-S algorithm, Bayesian interpretation of      162—163
Find-S algorithm, definition of      26
Find-S algorithm, inductive bias of      45
Find-S algorithm, limitations of      28—29
1 2 3 4
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå