Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Naber G.L. — Topology, Geometry and Gauge Fields
Naber G.L. — Topology, Geometry and Gauge Fields



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Topology, Geometry and Gauge Fields

Автор: Naber G.L.

Аннотация:

This book covers topology and geometry beginning with an accessible account of the extraordinary and rather mysterious impact of mathematical physics, especially gauge theory, on the study of the geometry and topology of manifolds. Much of the mathematics developed in the book to study the classical field theories of physics (de Rham cohomology, Chern classes, Semi-Riemannian manifolds, Cech cohomology, spinors etc.) is standard, but the treatment always keeps one eye on the physics and unhesitatingly sacrifices generality to clarity. The author brings the reader up to the level needed to conclude with a brief discussion of the Seiberg-Witten invariants. Although this volume can be read independently Naber carries on the program initiated in his earlier volume, Topology, Geometry and Gauge Fields: Foundations, Springer, 1997, and writes in much the same spirit with precisely the same philosophical motivation. A large number of exercises are included to encourage active participation on the part of the reader. This work will be of great interest to researchers and graduate students in the field of mathematical physics.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2000

Количество страниц: 443

Добавлена в каталог: 21.06.2006

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Nucleon      121
Nucleon field      123
Nucleon field, neutron component      123
Nucleon field, proton component      123
NULL      57 189 195
Null cone      189 195
Orbit      26
Oricntable manifold      8 241
Orientation      8
Orientation form      219
Orientation preserving      8
Orientation reversing      9
Orientation, chart consistent with      8
Orientation, opposite      8
Oriented atlas      8
Oriented manifold      8
Oriented orthonormal basis      220
Orthochronous      188
Orthogonal group      6
Outward pointing vector      290
Overlap functions      1
Parallel translation      38
Parallelizable      177
Partition of unity      163
Past directed      196
Pauli spin matrices      18 96
Poincare duality      339
Poincare lemma      62 253
Polarization      356
Principal bundle      28
Principal bundle, restriction of      32
Principal bundle, trivial      29 34
Product manifold      6
Projective spaces      5
Pseudoparticle      41
Pseudotensorial forms      257
Pullback      9 11 208 230
Quaternionic line bundle      48
Rank      208 230
Reconstruction theorem      34
refinement      161
Regular value      3
Removable singularities theorem      136
Representation      23
Rotation subgroup of $\mathcal{L}^1_+$      191
Schroedinger equation      76
Seiberg — Witten equations      408 411 414 424
Seiberg — Witten equations, action      415
Self-dual (SD)      135
Semi-orthogonal group      180
Short exact sequence      321
Sign of f      344
Simple cover      186
Smooth curve      2
Smooth deformation retraction      313
Smooth homotopy      170 305
Smooth homotopy type      313
Smooth manifold      1
Smooth map      2
Smooth retraction      313
Smoothly contractible      313
Smoothly homotopic      305
Smoothly nullhomotopic      305
Spacelike      57 189 195
Spacetime manifold      195
Spatial invorsion      110
Special linear groups      15
Special orthogonal group      6
Special semi-orthogonal group      180
Special unitary group      6
Spin 0      72
Spin one-half      84
Spin structure      410
Spin-j representation      89
Spinor bundle      72 410
Spinor field      117 410
Spinor representations      104
Spinor structure      115 197 388 399 402
Spontaneous symmetry breaking      133
Standard differentiable structure on $S^n$      4
Standard differentiable structure on $\mathbb{R}^n$      4
Star-shaped      253
Step function      274
Stereographic projection      4
Stiefel — Whitney class      115 397 401
Stokes’ Theorem      292
Structure constants      18
Structure group      28
Structure group, reduction of      159
Submanifold      3
Submanifold, 0-dimensional      3
Submanifold, open      3
Submersion      3
Submersion at p      3
Subordinate      163
Support      163 298
symmetric      355
Symmetric polynomial      360
Symmetric polynomial, Fundamental Theorem      361
Symmetrized trace      358
Symplectic group      6
Tangent bundle      177
Tangent space      2
Tangent vector      2
Tensor bundle      179
Tensor field      179
Tensor product      10 209 232
Tensorial forms      257
Time orientable      196
Time oriented      196
Timelike      57 189 195
Topological charge      46 63 69 138 387
Topological manifold      1
Transition functions      32
Trivialization      29
Trivialization, global      34
Trivializing cover      29
Two-component wavefunction      86
t’Hooft — Polyakov — Prasad — Sommerfield monopole      141
Unitary group      6
Vacuum stale      132
Vector analysis      250
Vector bundle      47
Vector field      6 178
Vector field, components of      6
Vector field, continuous      6
Vector field, horizontal lift      264
Vector field, left-invariant      16
Vector field, smooth      6
Vector-valued forms      12 128
Velocity vector      2
Vertical subspace      35
Vertical vector      35
Volume      284
Volume form      220 242
Vortices      132
Wedge product      11 13 210 232
Weitzenbock formula      419
Weyl neutrino equation      100
Weyl representation      98
Weyl spinor      117
Witten’s Theorem      416
Worldline      57
Worldline of a free material particle      189
Worldline of a photon      189
Yang — Mills action      46 56 135
Yang — Mills equations      56 135
Yang — Mills theory      56
Yang — Mills — Higgs action      130
Yang — Mills — Higgs action, gauge invariance      130
Yang — Mills — Higgs equations      134
Yang — Mills — Higgs monopoles      132
Zero section      315
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте