Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Stillwell J. — Mathematics and its history
Stillwell J. — Mathematics and its history



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Mathematics and its history

Автор: Stillwell J.

Аннотация:

This book presents a concise unified view of mathematics and its historical development. It is aimed at senior undergraduates - or other mathematicians - who have mastered the basic topics but wish to gain a better grasp of mathematics as a whole. Reasons for the emergence of the main fields of modern mathematics are identified, and connections between them are explained, by tracing the course of a few mathematical themes from ancient times down to the 20th century.

The emphasis is on history as a method for unifying and motivating mathematics, rather than as an end in iteself, and there is more mathematical detail than in other general histories. No historical expertise is assumed, and classical mathematics is rephrased in modern terms whenever it seems desirable. Nevertheless, there are copious references to original sources, and readers wishing to explore the classics for themselves will find it a useful guide.

An advantage of the unified approach is that it ties up loose ends and fills gaps in the standard undergraudate curriculum. Thus, readers can expect to add to their mathematical knowledge as well as gaining a new perspective on what they already know.



Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 5-th edition

Год издания: 1989

Количество страниц: 379

Добавлена в каталог: 27.01.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Heegaard      295
hermite      19 58 279 289 291
Higman      323
hilbert      9 11 14 43 73 74 83 224 244 245 326
Hilbert problems      43 316
Hipparchus      65
Hobbes      13 25 73 103 104 106
Hoelder      191
Holbein      81
Holmboe      162
Homeomorphisms      292 295
Homogeneous coordinates      91—95
Homotopic paths      307—308
Hooke      114 115 172 181
Horocycle      262—264 303
Horosphere      260 266
Hudde      104 107
Hurewicz      311
Huygens      67 97 100 116 172 173 240 242 245
Hydrodynamics      179—181 222
Hydrostatics      46 167
Hyperbola      20 65 71 88 89 107 204
Hyperbolic functions      168 182 183 258
Hyperbolic geometry      259—266 269—271 285 301 311
Hyperbolic geometry, conformal models      263—266 269
Hyperbolic geometry, projective model      260—263
Hyperbolic plane      258 260 269 306
hypergeometric      106
Hypergeometric differential equation      270
Hypotenuse      1
icosahedron      15 16 17 267 282
Indivisibles      103 106
Inertia      168
Infinite descent      141 143 144
Infinite series      100 107—109 118—129 178
Infinitesimals      101 104
infinity      37 39
Infinity, axioms of      327
Infinity, line at      83 89 92
Infinity, points at      72 82 83 88 91—93 206—208
Inflexion      67 90
Integration      100 101 108 110 116 154 169 193 195 220
Integration, complex      221 224—226
Intermediate Value Theorem      196 197
Interpolation      106 107 116 121—123
Inverse square law      114 170
Inversion of integrals      120 121 153 154 158 159 162 164
Inversion of series      108 109 121
Involute      242
Irrational numbers      2 8 9 14 25 32
Isometrie surfaces      244 246
Isoperimetric problem      183
jacobi      29 58 66 147 149 153 157—160 164—166 217 228 229 291
Jacobi, Fundamenta Nova      159 166
Jade Mirror      50
Jia Xian      136
JORDAN      279 291 295 317
Kac      54
Kaestner      243 252 253
Kelvin      217
Kepler      16 17 21 24 77 82 83 92 114 170
Klein      19 58 91 92 160 206 232 261 279 283—285 295 296 301 303 304 306 310 311
Klein, Erlanger Programm      284 292
Koebe      232
Kolmogorov      318
kronecker      128
Kummer      140
L'Hopital      173 183
Lacroix      73
Lagrange      24 27 28 34 73 160 162 164 170 203 223 232—235 252 277 278 289
Lagrange theorem      278
Lambert      257 258 359
lame      140
Laplace      164 170 171 203 234 235
Large Cardinals      318 319 327
Lattice      229
laurent      226
Lavoisier      234
Lebesgue      217 318
Lebesgue integral      317 318
Lebesgue measure      318 319
legendre      44 140 158 215 289 294 301
Leibniz      57 66 98 107 109 110 115—117 123 139 149 154 170 172 174 182—184 186 192 220 221 293 324
Lemniscate (of Bernoulli)      24 163 174
Lemniscate (of Bernoulli), arc length      155—157
Lemniscate (of Bernoulli), division of      161
Lemniscate (of Bernoulli), integral      155 157 159 174
Leonardo da Vinci      81
Leverrier      171
Levi ben Gershon      135 136 139 277
Lindemann      19 120
Linear equations      49 50
Linear fractional transformations      232 271 283 316
Liouville      154 265 266 291
listing      295
Liu Hui      49
Lobachevsky      66 259 260 262 266 272—274
Logarithm      108 114 116 120 121 131 184 220—222 225
Logarithm, complex      193 220—222 225
Logarithmic spiral      see "Equiangular spiral"
Maclaurin      72
Markov      309
Mathematical induction      136 137 143 144
Mathematical logic      116 324
Matiasevich      5 32
Matrices      50
Mean, arithmetic-geometric      131 160 252
Mean, geometric harmonic      131
Measure      316—320 327
Measure zero      317—319
Mechanical curves      67 171—176 237
Menaechmus      20 65 71 205
Mengoli      123 124
Mercator projection      223
Mercator, G.      223
Mercator, N.      107 108 120
mersenne      29 66 76 81 96 151 169 176
Mersenne primes      29
Merton acceleration theorem      168
Method of exhaustion      9 25 40—47 100
Metric      217 see
Minding      246 258
Modular functions      58 160
Moebius      84 86 215 284 295 296
Moebius band      93 295
Monge      73
Mordell      35 141
Multinomial theorem      139
Multiplicity      204—206
Neil      67 70 240
Neumann      211 224
Newton      5 12 21 24 56 66 69—73 77 90 101 104 107—109 110 112—116 121—123 125 131 147 162 168—171 173 174 179 184 197 202 210 212 226 240—242 252 289 311
Newton classification of cubic curves      69—71 90 114 115 147 228
Newton first law      168
Newton second law      168 177
Newton, Principia      114 115 170 173 181
Niceron      81 82
Nielsen      308
Nine Chapters      49
Non-Euclidean geometry      14 188 218 255—274 311
Normal subgroups      278 279
Novikov      323
octahedron      15 16 282
Ordinal numbers      314—316
Oresme      65 66 119 168
Orientability      295
Ostrogradsky      225
Ostrowski      200
parabola      20 65 71 88 102 168 172 205
Parabola, area of segment      44—46
Parallels      73 80 82 83 93 255—257 262 272 273 316 318
Parametrization of circle      6 153
Parametrization of cubic curves      145 149 152 153 229—231
Parametrization of ellipse      154
Parametrization of folium      68 145
Paris      327
Pascal      76 86 95 97—99 136 138 139 151 250
Pascal theorem      95 98
Pascal triangle      98 116 135 136
Peano arithmetic      326—328
Pell's equation      31—34
Pendulum      154 173 242
Pentagon      19
Perfect numbers      29 138
Perseus      23 214
Perspective      78—80 82
PI      18 19 106 107 120 131 237
Plato      3
Plimpton-322      3
Pluecker      91 95
Plutarch      46 47
Poincare      35 147 171 228 232 269—271 285 286 294 295 301 304 306 308—312
Poincare conjecture      311 312
Poincare last theorem      312
Polya      134 298
Polygonal numbers      28 29
Polyhedra, classification of      295
Polyhedra, convex      235 293 297 301
Polyhedra, generalized      295
Polyhedra, regular      15—17 25 53 267 280—284
Polyhedra, volumes      260
Poncelet      83
POST      321 325 326 328
Potential      179 180 224
Power series      120 121 223 226 234
Power series with negative powers      226
Power series, fractional      125 126
Prime numbers      29 30 31 128 129 179 218 219
Prime numbers, infinitely many      29 129 179
Prime numbers, Mersenne      29
probability      62 127 137 203 318
Projection      82 85
Projective completion      92 93 207
Projective geometry      72 73 82 86
Projective line      92 93 206—208
Projective plane      92 206 296 303 304
Projective transformations      82 83 230 262 276 284
Pseudosphere      240 245 247 258 261—263 265 303
Ptolemy      24 77 169 170 223
Puiseux      126 197 210 212 226
Puiseux expansions      126
Pulverizer      34
Pythagoras      3 11 12 179
Pythagoras converse theorem      1
Pythagoras theorem      1 2 7—10 13 73
Pythagorean triples      3 4 31 140 142
Pythagoreans      8 9 11 28 32 33 38 176
Quadratic equations      51—53 55 189
Quadrature      107 108
quantum mechanics      167
Quintic equations      58 162 164 278 289 291
Ramsey      327 328
Rational functions      121 128 145 152 217 230
Rational numbers      8 9 40 314 316
Rational points on a cubic      35 144—149
Rational points on a curve      5 141 144
Rational points on the circle      4—6 35
Rational right-angled triangle      4 6 141—144
Real numbers      39 40 197 314
Real numbers, completeness of      314
Real numbers, uncountability of      314 318
Recurrence relations      32—34 127 128
Recursively enumerable sets      325 326
Relativity      167 330
Resultant      72
Rhumb line      239
Riemann      129 160 181 210 215—219 224 227 228 254 266 270 294 295 311
Riemann hypothesis      129 218 219
Riemann integral      217 317 318 320
Riemann mapping theorem      224
Riemann surfaces      210 212—215 217 226 295
Riemann zeta function      129 218
Right-angled triangle with rational sides      4 141—144
Right-angled triangle, side lengths      1
Rigid motion      246 262 269 285 319
Roberval      66 103 169
Roses of Grandi      69
Ruffini      58 278
Ruler and compass constructions      18 53 157 161
Russell      26 324
Saccheri      256 257 264
Salmon      231
Schwarz      224 270 304
Scott      293
Secular variation      170
Seifert and Threlfall      308
Set theory      39 176 179 314—316 318 319 324 327
Set theory, axioms      327
Shelah      319
Sluse      104 114
Snell      77
Solovay      319
Solution by radicals      58 125 277—279
Spherical geometry      257 258
Spira      23
squares      28 29 142—144
Squaring the circle      18 120
Statics      47 168
Steiner      217
Stereographic projection      207 223
Stevin      169
Stirling      69
Surfaces of constant curvature      244—246
Surfaces, curvature of      243 244
Surfaces, non-orientable      295
Surfaces, topological classification      295—297
symptoms      22
Tarski      319
Tartaglia      54 59—62
Taurinus      258 259
Tautochrone      173
Taylor      122 177 178 184
Taylor series      122
Taylor theorem      122
Tessellations      17 267—270 285—287 295 304—308
tetrahedron      15 16 17 272 280
Thaies      11 13
Theaetetus      25
Theon of Alexandria      36
Theory of equations      58 188 277—279 283 289—291
Theory of proportions      9 39 41 47
Theta functions      29 160
Three-body problem      170 312
Thurston      293
Tietze      309
topology      73 116 206—208 212—215 218 232 285 287 292—309 311
Topology, algebraic      311
Topology, general      292
Topology, geometric      292
Torricelli      103 119 239
Torus      23 152 213 226 229 302—306 311
Torus, geometry      306
Tractrix      240 242 245
Trajectory of projectile      61 168 169
Transcendental curves      67 171 237
Transcendental functions      120 131 160 173 291
Transcendental numbers      19 120 131 237
Triangular numbers      28 30
Trisection      18 56
Turing      321—323
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте